Suppr超能文献

新发癌症患者中乙型肝炎或丙型肝炎或 HIV 的风险预测。

Risk prediction of hepatitis B or C or HIV among newly diagnosed cancer patients.

机构信息

SWOG Statistics and Data Management Center, Fred Hutchinson Cancer Center, Seattle, WA, USA.

The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

J Natl Cancer Inst. 2023 Jun 8;115(6):703-711. doi: 10.1093/jnci/djad053.

Abstract

BACKGROUND

Screening for viral infection in cancer patients is inconsistent. A mechanism to readily identify cancer patients at increased risk of existing or prior viral infection could enhance screening efforts while reducing costs.

METHODS

We identified factors associated with increased risk of past or chronic hepatitis virus B, hepatitis virus C, or HIV infection before initiation of systemic cancer therapy. Data were from a multicenter prospective cohort study of 3051 patients with newly diagnosed cancer (SWOG-S1204) enrolled between 2013 and 2017. Patients completed a survey with questions pertaining to personal history and behavioral, socioeconomic, and demographic risk factors for viral hepatitis or HIV. We derived a risk model to predict the presence of viral infection in a random set of 60% of participants using best subset selection. The derived model was validated in the remaining 40% of participants. Logistic regression was used.

RESULTS

A model with 7 risk factors was identified, and a risk score with 4 levels was constructed. In the validation cohort, each increase in risk level was associated with a nearly threefold increased risk of viral positivity (odds ratio = 2.85, 95% confidence interval = 2.26 to 3.60, P < .001). Consistent findings were observed for individual viruses. Participants in the highest risk group (with >3 risk factors), comprised of 13.4% of participants, were 18 times more likely to be viral positive compared with participants with no risk factors (odds ratio = 18.18, 95% confidence interval = 8.00 to 41.3, P < .001).

CONCLUSIONS

A risk-stratified screening approach using a limited set of questions could serve as an effective strategy to streamline screening for individuals at increased risk of viral infection.

摘要

背景

癌症患者的病毒感染筛查不一致。一种能够识别癌症患者是否存在或既往存在病毒感染风险的机制,可以在降低成本的同时,增强筛查效果。

方法

我们确定了在开始全身性癌症治疗之前,与乙型肝炎病毒、丙型肝炎病毒或 HIV 既往或慢性感染风险增加相关的因素。数据来自于 2013 年至 2017 年间纳入的 3051 例新发癌症患者的多中心前瞻性队列研究(SWOG-S1204)。患者完成了一份调查,其中包含与病毒性肝炎或 HIV 个人史及行为、社会经济和人口统计学风险因素相关的问题。我们使用最佳子集选择从一组随机的 60%参与者中提取出一个预测病毒感染存在的风险模型。在剩余的 40%参与者中验证了该模型。使用逻辑回归进行分析。

结果

确定了一个包含 7 个风险因素的模型,并构建了一个具有 4 个水平的风险评分。在验证队列中,风险水平每增加一级,与病毒阳性的风险增加近三倍相关(比值比=2.85,95%置信区间为 2.26 至 3.60,P<0.001)。对于个体病毒也观察到了一致的发现。在最高风险组(有>3 个危险因素)中,占参与者的 13.4%,与无危险因素的参与者相比,病毒阳性的可能性要高出 18 倍(比值比=18.18,95%置信区间为 8.00 至 41.3,P<0.001)。

结论

使用有限数量的问题进行风险分层筛查可能是一种有效的策略,可以简化对病毒感染风险增加的个体的筛查。

相似文献

7
Occult hepatitis B in HIV-infected patients.HIV感染患者中的隐匿性乙型肝炎
J Acquir Immune Defic Syndr. 2004 Jul 1;36(3):869-75. doi: 10.1097/00126334-200407010-00015.

本文引用的文献

9
Excess Mortality among HIV-Infected Individuals with Cancer in the United States.美国癌症合并人类免疫缺陷病毒感染个体的超额死亡率
Cancer Epidemiol Biomarkers Prev. 2017 Jul;26(7):1027-1033. doi: 10.1158/1055-9965.EPI-16-0964. Epub 2017 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验