Maus Oliver, Agne Matthias T, Fuchs Till, Till Paul S, Wankmiller Björn, Gerdes Josef Maximilian, Sharma Rituraj, Heere Michael, Jalarvo Niina, Yaffe Omer, Hansen Michael Ryan, Zeier Wolfgang G
Institute of Inorganic and Analytical Chemistry, University of Münster, D-48149 Münster, Germany.
International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, D-48149 Münster, Germany.
J Am Chem Soc. 2023 Apr 5;145(13):7147-7158. doi: 10.1021/jacs.2c11803. Epub 2023 Mar 22.
Aliovalent substitution is a common strategy to improve the ionic conductivity of solid electrolytes for solid-state batteries. The substitution of SbS by WS in NaSbWS leads to a very high ionic conductivity of 41 mS cm at room temperature. While pristine NaSbS crystallizes in a tetragonal structure, the substituted NaSbWS crystallizes in a cubic phase at room temperature based on its X-ray diffractogram. Here, we show by performing pair distribution function analyses and static single-pulse Sb NMR experiments that the short-range order of NaSbWS remains tetragonal despite the change in the Bragg diffraction pattern. Temperature-dependent Raman spectroscopy revealed that changed lattice dynamics due to the increased disorder in the Na substructure leads to dynamic sampling causing the discrepancy in local and average structure. While showing no differences in the local structure, compared to pristine NaSbS, quasi-elastic neutron scattering and solid-state Na nuclear magnetic resonance measurements revealed drastically improved Na diffusivity and decreased activation energies for NaSbWS. The obtained diffusion coefficients are in very good agreement with theoretical values and long-range transport measured by impedance spectroscopy. This work demonstrates the importance of studying the local structure of ionic conductors to fully understand their transport mechanisms, a prerequisite for the development of faster ionic conductors.
异价取代是提高固态电池固体电解质离子电导率的常用策略。在NaSbWS中用WS取代SbS会导致在室温下具有41 mS cm的非常高的离子电导率。虽然原始的NaSbS以四方结构结晶,但基于其X射线衍射图,取代后的NaSbWS在室温下以立方相结晶。在这里,我们通过进行对分布函数分析和静态单脉冲Sb NMR实验表明,尽管布拉格衍射图案发生了变化,但NaSbWS的短程有序仍然是四方的。温度相关的拉曼光谱表明,由于Na子结构中无序度的增加导致晶格动力学发生变化,从而导致动态采样,进而导致局部结构和平均结构出现差异。与原始的NaSbS相比,虽然局部结构没有差异,但准弹性中子散射和固态Na核磁共振测量表明,NaSbWS的Na扩散率显著提高,活化能降低。获得的扩散系数与理论值以及通过阻抗谱测量的长程传输非常吻合。这项工作证明了研究离子导体的局部结构对于充分理解其传输机制的重要性,这是开发更快离子导体的先决条件。