Guo Hao, Häfner Michael, Grüninger Helen, Bianchini Matteo
Department of Biology, Chemistry and Earth Sciences, University of Bayreuth, Universitätstraße 30, 95447, Bayreuth, Germany.
Bavarian Center for Battery Technology (BayBatt), Weiherstraße 26, 95448, Bayreuth, Germany.
Adv Sci (Weinh). 2025 Aug;12(30):e07224. doi: 10.1002/advs.202507224. Epub 2025 May 28.
Sodium-based solid-state batteries may represent safe and cost-effective energy storage devices, complementing Li-ion for specific applications such as grid storage. Thus, sustainable solid-state electrolytes (SSE) with high ionic conductivity need to be developed. Sodium metal halide SSEs have attracted significant attention due to their ionic conductivity, electrochemical stability, and adequate processibility. Here, SSE based on NaAlCl (NAC) and NaZnCl (NZC) are investigated, nominally NaZnAlCl₄. Compounds synthesized by ball-milling and investigated by X-ray diffraction revealed a two-phase system, with a solid solution in the NaZnCl-type structure extending to ≈34(3)% Al substitution. EIS results demonstrate the highest ionic conductivity is near the miscibility gap edge (x = 0.625), where σ is increased by several orders of magnitude as compared to NZC and reaches 1.5×10⁻ S cm at 25 °C, above the values of NaZnCl/NaAlCl. The combined use of molecular dynamics simulations and nuclear magnetic resonance distinctly elucidates the importance of achieving enough Na⁺ vacancies in both Na sublattices in NZC-type structures. This work introduces a novel class of SSE based on the NZC olivine structure, demonstrates that they can be used as catholytes to assemble working solid-state sodium batteries, and provides insights into the correlation between composition, crystalline structure, and ionic conduction pathways.
钠基固态电池可能是安全且具有成本效益的储能设备,可作为锂离子电池在诸如电网储能等特定应用中的补充。因此,需要开发具有高离子电导率的可持续固态电解质(SSE)。钠金属卤化物固态电解质因其离子电导率、电化学稳定性和足够的可加工性而备受关注。在此,研究了基于NaAlCl(NAC)和NaZnCl(NZC)(名义上为NaZnAlCl₄)的固态电解质。通过球磨合成并经X射线衍射研究的化合物显示为两相体系,在NaZnCl型结构中的固溶体中铝的取代延伸至约34(3)%。电化学阻抗谱(EIS)结果表明,最高离子电导率接近混溶间隙边缘(x = 0.625),与NZC相比,此处的电导率提高了几个数量级,在25°C时达到1.5×10⁻³ S cm⁻¹,高于NaZnCl/NaAlCl的值。分子动力学模拟和核磁共振的联合使用清楚地阐明了在NZC型结构的两个钠亚晶格中实现足够的Na⁺空位的重要性。这项工作引入了一类基于NZC橄榄石结构的新型固态电解质,证明了它们可用作阴极电解液来组装工作固态钠电池,并深入了解了组成、晶体结构和离子传导途径之间的相关性。