Department of Pharmacy, Uppsala University, Uppsala, Sweden.
Clinical Pharmacology Modelling and Simulation, GSK, London, UK.
J Pharmacokinet Pharmacodyn. 2023 Aug;50(4):297-314. doi: 10.1007/s10928-023-09853-z. Epub 2023 Mar 22.
Model-based meta-analysis (MBMA) is an approach that integrates relevant summary level data from heterogeneously designed randomized controlled trials (RCTs). This study not only evaluated the predictability of a published MBMA for forced expiratory volume in one second (FEV) and its link to annual exacerbation rate in patients with chronic obstructive pulmonary disease (COPD) but also included data from new RCTs. A comparative effectiveness analysis across all drugs was also performed. Aggregated level data were collected from RCTs published between July 2013 and November 2020 (n = 132 references comprising 156 studies) and combined with data used in the legacy MBMA (published RCTs up to July 2013 - n = 142). The augmented data (n = 298) were used to evaluate the predictive performance of the published MBMA using goodness-of-fit plots for assessment. Furthermore, the model was extended including drugs that were not available before July 2013, estimating a new set of parameters. The legacy MBMA model predicted the post-2013 FEV data well, and new estimated parameters were similar to those of drugs in the same class. However, the exacerbation model overpredicted the post-2013 mean annual exacerbation rate data. Inclusion of year when the study started on the pre-treatment placebo rate improved the model predictive performance perhaps explaining potential improvements in the disease management over time. The addition of new data to the legacy COPD MBMA enabled a more robust model with increased predictability performance for both endpoints FEV and mean annual exacerbation rate.
基于模型的荟萃分析(MBMA)是一种整合来自异质设计的随机对照试验(RCT)的相关汇总水平数据的方法。本研究不仅评估了已发表的 MBMA 对慢性阻塞性肺疾病(COPD)患者一秒用力呼气量(FEV)的预测能力及其与年恶化率的相关性,还纳入了新 RCT 的数据。还对所有药物进行了比较有效性分析。从 2013 年 7 月至 2020 年 11 月发表的 RCT 中收集汇总水平数据(n=132 个参考文献包含 156 项研究),并与遗留 MBMA 中使用的数据相结合(截至 2013 年 7 月的已发表 RCT-n=142)。使用增广数据(n=298)通过评估拟合优度图来评估发表的 MBMA 的预测性能。此外,还扩展了模型,包括 2013 年 7 月之前不可用的药物,估计了一组新的参数。遗留的 MBMA 模型很好地预测了 2013 年后的 FEV 数据,并且新估计的参数与同类型药物的参数相似。然而,恶化模型过度预测了 2013 年后的平均年恶化率数据。纳入研究开始时预处理安慰剂率的年份可能解释了随着时间的推移疾病管理的潜在改善,从而改善了模型预测性能。将新数据添加到遗留的 COPD MBMA 中,使模型对两个终点 FEV 和平均年恶化率的预测性能更加稳健。