Clinical Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
M&S Decisions LLC, Moscow, Russia.
Pharm Res. 2022 Aug;39(8):1761-1777. doi: 10.1007/s11095-022-03201-5. Epub 2022 Feb 16.
Model-based meta-analysis (MBMA) is a quantitative approach that leverages published summary data along with internal data and can be applied to inform key drug development decisions, including the benefit-risk assessment of a treatment under investigation. These risk-benefit assessments may involve determining an optimal dose compared against historic external comparators of a particular disease indication. MBMA can provide a flexible framework for interpreting aggregated data from historic reference studies and therefore should be a standard tool for the model-informed drug development (MIDD) framework.In addition to pairwise and network meta-analyses, MBMA provides further contributions in the quantitative approaches with its ability to incorporate longitudinal data and the pharmacologic concept of dose-response relationship, as well as to combine individual- and summary-level data and routinely incorporate covariates in the analysis.A common application of MBMA is the selection of optimal dose and dosing regimen of the internal investigational molecule to evaluate external benchmarking and to support comparator selection. Two case studies provided examples in applications of MBMA in biologics (durvalumab + tremelimumab for safety) and small molecule (fenebrutinib for efficacy) to support drug development decision-making in two different but well-studied disease areas, i.e., oncology and rheumatoid arthritis, respectively.Important to the future directions of MBMA include additional recognition and engagement from drug development stakeholders for the MBMA approach, stronger collaboration between pharmacometrics and statistics, expanded data access, and the use of machine learning for database building. Timely, cost-effective, and successful application of MBMA should be part of providing an integrated view of MIDD.
基于模型的荟萃分析(MBMA)是一种定量方法,它利用已发表的汇总数据和内部数据,可以应用于为关键药物开发决策提供信息,包括正在研究的治疗方法的获益-风险评估。这些风险-获益评估可能涉及确定与特定疾病适应证的历史外部对照相比的最佳剂量。MBMA 可以为解释历史参考研究的汇总数据提供灵活的框架,因此应该成为模型指导药物开发(MIDD)框架的标准工具。
除了成对和网络荟萃分析外,MBMA 还通过能够纳入纵向数据和药物剂量-反应关系的药理学概念,以及合并个体和汇总水平的数据,并在分析中常规纳入协变量,在定量方法中提供了进一步的贡献。MBMA 的常见应用是选择内部研究分子的最佳剂量和给药方案,以评估外部基准并支持比较药物的选择。两个案例研究提供了在生物制剂(度伐鲁单抗+替西木单抗用于安全性)和小分子药物(非布司他用于疗效)中应用 MBMA 的示例,分别支持在两个不同但研究充分的疾病领域(肿瘤学和类风湿关节炎)的药物开发决策。
MBMA 未来发展的重点包括药物开发利益相关者对 MBMA 方法的进一步认可和参与、药代动力学和统计学之间更强的合作、扩展数据访问以及使用机器学习进行数据库构建。及时、具有成本效益和成功应用 MBMA 应该是提供 MIDD 综合视图的一部分。