Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, UK.
Angew Chem Int Ed Engl. 2023 May 15;62(21):e202301433. doi: 10.1002/anie.202301433. Epub 2023 Apr 18.
Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for environmentally benign applications. However, insufficient understanding of ORR 2 e -pathway mechanism at the atomic level inhibits rational design of catalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H O electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2 e -pathway selectivity. Through electrochemical and operando spectroscopic studies on a series of CoN /carbon nanotube hybrids, a construction-driven approach based on an extended "dynamic active site saturation" model that aims to create the maximum number of 2 e ORR sites by directing the secondary ORR electron transfer towards the 2 e intermediate is proven to be attainable by manipulating O hydrogenation kinetics.
电催化氧气还原反应 (ORR) 因其环境友好的应用而受到广泛研究。然而,原子水平上对 ORR 2e-途径机制的理解不足,阻碍了对高活性和选择性催化剂的合理设计,这引起了人们的关注,包括由于芬顿反应导致的催化剂降解或 H2O 电合成效率低下。在此,我们表明,基于 Sabatier 火山图论点的普遍接受的 ORR 电催化剂设计优化了活性,但无法解释 2e-途径的选择性。通过对一系列 CoN/碳纳米管杂化物的电化学和操作光谱研究,一种基于扩展的“动态活性位点饱和”模型的构建驱动方法被证明是可行的,该方法旨在通过控制 O 氢化动力学来创造最大数量的 2e-ORR 位点,从而引导次级 ORR 电子转移到 2e-中间产物。