Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense Madrid, Madrid 28040, Spain.
Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid 28911, Spain.
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2215041120. doi: 10.1073/pnas.2215041120. Epub 2023 Mar 22.
Networks of social interactions are the substrate upon which civilizations are built. Often, we create new bonds with people that we like or feel that our relationships are damaged through the intervention of third parties. Despite their importance and the huge impact that these processes have in our lives, quantitative scientific understanding of them is still in its infancy, mainly due to the difficulty of collecting large datasets of social networks including individual attributes. In this work, we present a thorough study of real social networks of 13 schools, with more than 3,000 students and 60,000 declared positive and negative relationships, including tests for personal traits of all the students. We introduce a metric-the "triadic influence"-that measures the influence of nearest neighbors in the relationships of their contacts. We use neural networks to predict the sign of the relationships in these social networks, extracting the probability that two students are friends or enemies depending on their personal attributes or the triadic influence. We alternatively use a high-dimensional embedding of the network structure to also predict the relationships. Remarkably, using the triadic influence (a simple one-dimensional metric) achieves the best accuracy, and adding the personal traits of the students does not improve the results, suggesting that the triadic influence acts as a proxy for the social compatibility of students. We postulate that the probabilities extracted from the neural networks-functions of the triadic influence and the personalities of the students-control the evolution of real social networks, opening an avenue for the quantitative study of these systems.
社交网络是文明构建的基础。我们常常与自己喜欢的人建立新的联系,或者感到我们的关系因第三方的干预而受损。尽管这些关系非常重要,对我们的生活有巨大影响,但我们对它们的定量科学理解仍处于起步阶段,主要是因为收集包括个人属性在内的大规模社交网络数据集非常困难。在这项工作中,我们对 13 所学校的真实社交网络进行了全面研究,这些网络包括 3000 多名学生和 6 万条正向和负向关系,其中还包括对所有学生个人特征的测试。我们引入了一种度量标准,即“三元影响”,用于衡量最近邻居在其联系人关系中的影响。我们使用神经网络来预测这些社交网络中的关系的符号,根据学生的个人属性或三元影响来提取两个学生是朋友还是敌人的概率。我们还交替使用网络结构的高维嵌入来预测关系。值得注意的是,使用三元影响(一种简单的一维度量)可以达到最佳的准确性,并且添加学生的个人特征并不能提高结果,这表明三元影响可以作为学生社交兼容性的代理。我们假设从神经网络中提取的概率——三元影响和学生个性的函数——控制着真实社交网络的演化,为这些系统的定量研究开辟了一条途径。