Zhang Zhe, Delplace Pierre, Fleury Romain
École Polytechnique Fédérale de Lausanne, Laboratory of Wave Engineering, Station 11, CH-1015 Lausanne, Switzerland.
École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
Sci Adv. 2023 Mar 22;9(12):eadg3186. doi: 10.1126/sciadv.adg3186.
Topological insulators are crystalline materials that have revolutionized our ability to control wave transport. They provide us with unidirectional channels that are immune to obstacles, defects, or local disorder and can even survive some random deformations of their crystalline structures. However, they always break down when the level of disorder or amorphism gets too large, transitioning to a topologically trivial Anderson insulating phase. We demonstrate a two-dimensional amorphous topological regime that survives arbitrarily strong levels of amorphism. We implement it for electromagnetic waves in a nonreciprocal scattering network and experimentally demonstrate the existence of unidirectional edge transport in the strong amorphous limit. This edge transport is shown to be mediated by an anomalous edge state whose topological origin is evidenced by direct topological invariant measurements. Our findings extend the reach of topological physics to a class of systems in which strong amorphism can induce, enhance, and guarantee the topological edge transport instead of impeding it.
拓扑绝缘体是一种晶体材料,它彻底改变了我们控制波传输的能力。它们为我们提供了单向通道,这些通道不受障碍物、缺陷或局部无序的影响,甚至在其晶体结构发生一些随机变形时仍能存在。然而,当无序或非晶态程度变得太大时,它们总是会失效,转变为拓扑平凡的安德森绝缘相。我们展示了一种二维非晶拓扑体系,它能在任意强的非晶态水平下存活。我们在一个非互易散射网络中针对电磁波实现了它,并通过实验证明了在强非晶极限下单向边缘传输的存在。这种边缘传输被证明是由一种反常边缘态介导的,其拓扑起源通过直接的拓扑不变量测量得到了证明。我们的发现将拓扑物理的范围扩展到了一类系统,在这类系统中,强非晶态可以诱导、增强并保证拓扑边缘传输,而不是阻碍它。