Suppr超能文献

利用基于多尺度注意力的网络分析海马亚区在神经退行性疾病进展中的作用。

Role of hippocampal subfields in neurodegenerative disease progression analyzed with a multi-scale attention-based network.

机构信息

School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China.

School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Neuroimage Clin. 2023;38:103370. doi: 10.1016/j.nicl.2023.103370. Epub 2023 Mar 15.

Abstract

BACKGROUND AND OBJECTIVE

Both Alzheimer's disease (AD) and Parkinson's disease (PD) are progressive neurodegenerative diseases. Early identification is very important for the prevention and intervention of their progress. Hippocampus plays a crucial role in cognition, in which there are correlations between atrophy of Hippocampal subfields and cognitive impairment in neurodegenerative diseases. Exploring biomarkers in the prediction of early cognitive impairment in AD and PD is significant for understanding the progress of neurodegenerative diseases.

METHODS

A multi-scale attention-based deep learning method is proposed to perform computer-aided diagnosis for neurodegenerative disease based on Hippocampal subfields. First, the two dimensional (2D) Hippocampal Mapping Image (HMI) is constructed and used as input of three branches of the following network. Second, the multi-scale module and attention module are integrated into the 2D residual network to improve the diversity of the extracted features and capture significance of various voxels for classification. Finally, the role of Hippocampal subfields in the progression of different neurodegenerative diseases is analyzed using the proposed method.

RESULTS

Classification experiments between normal control (NC), mild cognitive impairment (MCI), AD, PD with normal cognition (PD-NC) and PD with mild cognitive impairment (PD-MCI) are carried out using the proposed method. Experimental results show that subfields subiculum, presubiculum, CA1, and molecular layer are strongly correlated with cognitive impairment in AD and MCI, subfields GC-DG and fimbria are sensitive in detecting early stage of cognitive impairment in MCI, subfields CA3, CA4, GC-DG, and CA1 show significant atrophy in PD. For exploring the role of Hippocampal subfields in PD cognitive impairment, we find that left parasubiculum, left HATA and left presubiculum could be important biomarkers for predicting conversion from PD-NC to PD-MCI.

CONCLUSION

The proposed multi-scale attention-based network can effectively discover the correlation between subfields and neurodegenerative diseases. Experimental results are consistent with previous clinical studies, which will be useful for further exploring the role of Hippocampal subfields in neurodegenerative disease progression.

摘要

背景与目的

阿尔茨海默病(AD)和帕金森病(PD)均为进行性神经退行性疾病。早期识别对其进展的预防和干预非常重要。海马在认知中起着至关重要的作用,在神经退行性疾病中,海马亚区的萎缩与认知障碍之间存在相关性。探索 AD 和 PD 中早期认知障碍预测的生物标志物对于理解神经退行性疾病的进展具有重要意义。

方法

提出了一种基于海马亚区的多尺度注意深度学习方法,用于进行神经退行性疾病的计算机辅助诊断。首先,构建二维(2D)海马图谱图像(HMI)并将其用作以下网络三个分支的输入。其次,将多尺度模块和注意模块集成到 2D 残差网络中,以提高提取特征的多样性并捕获分类中各种体素的重要性。最后,使用所提出的方法分析海马亚区在不同神经退行性疾病进展中的作用。

结果

使用所提出的方法对正常对照(NC)、轻度认知障碍(MCI)、AD、认知正常的 PD(PD-NC)和轻度认知障碍的 PD(PD-MCI)进行分类实验。实验结果表明,在 AD 和 MCI 中,海马亚区 subiculum、presubiculum、CA1 和分子层与认知障碍密切相关,在 MCI 早期认知障碍检测中,亚区 GC-DG 和 fimbria 较为敏感,在 PD 中,亚区 CA3、CA4、GC-DG 和 CA1 显示明显萎缩。为了探索海马亚区在 PD 认知障碍中的作用,我们发现左侧副海马、左侧 HATA 和左侧 presubiculum 可能是预测从 PD-NC 到 PD-MCI 转化的重要生物标志物。

结论

所提出的多尺度注意网络可以有效地发现亚区与神经退行性疾病之间的相关性。实验结果与先前的临床研究一致,这将有助于进一步探索海马亚区在神经退行性疾病进展中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b3/10034639/c6ae7c9d4286/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验