Suppr超能文献

自动血管衰减测量用于对比增强 CT 的质量控制:门静脉的验证。

Automatic vessel attenuation measurement for quality control of contrast-enhanced CT: Validation on the portal vein.

机构信息

Department of Statistics, Rice University, Houston, Texas, USA.

Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

出版信息

Med Phys. 2024 Sep;51(9):5954-5964. doi: 10.1002/mp.17267. Epub 2024 Jun 20.

Abstract

BACKGROUND

Adequate image enhancement of organs and blood vessels of interest is an important aspect of image quality in contrast-enhanced computed tomography (CT). There is a need for an objective method for evaluation of vessel contrast that can be automatically and systematically applied to large sets of CT exams.

PURPOSE

The purpose of this work was to develop a method to automatically segment and measure attenuation Hounsfield Unit (HU) in the portal vein (PV) in contrast-enhanced abdomen CT examinations.

METHODS

Input CT images were processed by a vessel enhancing filter to determine candidate PV segmentations. Multiple machine learning (ML) classifiers were evaluated for classifying a segmentation as corresponding to the PV based on segmentation shape, location, and intensity features. A public data set of 82 contrast-enhanced abdomen CT examinations was used to train the method. An optimal ML classifier was selected by training and tuning on 66 out of the 82 exams (80% training split) in the public data set. The method was evaluated in terms of segmentation classification accuracy and PV attenuation measurement accuracy, compared to manually determined ground truth, on a test set of the remaining 16 exams (20% test split) held out from public data set. The method was further evaluated on a separate, independently collected test set of 21 examinations.

RESULTS

The best classifier was found to be a random forest, with a precision of 0.892 in the held-out test set to correctly identify the PV from among the input candidate segmentations. The mean absolute error of the measured PV attenuation relative to ground truth manual measurement was 13.4 HU. On the independent test set, the overall precision decreased to 0.684. However, the PV attenuation measurement remained relatively accurate with a mean absolute error of 15.2 HU.

CONCLUSIONS

The method was shown to accurately measure PV attenuation over a large range of attenuation values, and was validated in an independently collected dataset. The method did not require time-consuming manual contouring to supervise training. The method may be applied to systematic quality control of contrast-enhanced CT examinations.

摘要

背景

在对比增强 CT(computed tomography,CT)中,充分增强感兴趣的器官和血管是图像质量的一个重要方面。需要有一种能够自动和系统地应用于大量 CT 检查的评估血管对比度的客观方法。

目的

本研究旨在开发一种自动分割和测量对比增强腹部 CT 检查门静脉(portal vein,PV)衰减 Hounsfield 单位(Hounsfield Unit,HU)的方法。

方法

输入 CT 图像通过血管增强滤波器进行处理,以确定候选的 PV 分割。基于分割形状、位置和强度特征,评估了多个机器学习(machine learning,ML)分类器,以将分割分类为对应于 PV。使用 82 例对比增强腹部 CT 检查的公共数据集来训练该方法。通过在公共数据集中的 66 例(80%的训练分割)上进行训练和调整,选择最佳的 ML 分类器。基于从公共数据集中保留的 16 例(20%的测试分割)的测试集,评估方法在分割分类准确性和 PV 衰减测量准确性方面的表现,与手动确定的真实值进行比较。该方法还在独立收集的 21 例检查的单独测试集上进行了评估。

结果

发现最佳分类器为随机森林,在保留的测试集中,正确识别输入候选分割中的 PV 的准确率为 0.892。与手动测量的真实值相比,测量的 PV 衰减的平均绝对误差为 13.4 HU。在独立测试集上,整体准确率下降到 0.684。然而,PV 衰减测量仍然相对准确,平均绝对误差为 15.2 HU。

结论

该方法能够在较大衰减范围内准确测量 PV 衰减,并在独立收集的数据集上得到验证。该方法不需要耗时的手动轮廓绘制来监督训练。该方法可应用于对比增强 CT 检查的系统质量控制。

相似文献

本文引用的文献

5
3D Graph-Connectivity Constrained Network for Hepatic Vessel Segmentation.三维图连通性约束网络用于肝脏血管分割。
IEEE J Biomed Health Inform. 2022 Mar;26(3):1251-1262. doi: 10.1109/JBHI.2021.3118104. Epub 2022 Mar 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验