文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Respond-CAM:通过可视化分析3D成像数据的深度模型

Respond-CAM: Analyzing Deep Models for 3D Imaging Data by Visualizations.

作者信息

Zhao Guannan, Zhou Bo, Wang Kaiwen, Jiang Rui, Xu Min

机构信息

Department of Automation, Tsinghua University, Beijing, China.

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2018 Sep;11070:485-492. doi: 10.1007/978-3-030-00928-1_55. Epub 2018 Sep 26.


DOI:10.1007/978-3-030-00928-1_55
PMID:36951805
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10028588/
Abstract

The convolutional neural network (CNN) has become a powerful tool for various biomedical image analysis tasks, but there is a lack of visual explanation for the machinery of CNNs. In this paper, we present a novel algorithm, Respond-weighted Class Activation Mapping (Respond-CAM), for making CNN-based models interpretable by visualizing input regions that are important for predictions, especially for biomedical 3D imaging data inputs. Our method uses the gradients of any target concept (e.g. the score of target class) that flow into a convolutional layer. The weighted feature maps are combined to produce a heatmap that highlights the important regions in the image for predicting the target concept. We prove a preferable sum-to-score property of the Respond-CAM and verify its significant improvement on 3D images from the current state-of-the-art approach. Our tests on Cellular Electron Cryo-Tomography 3D images show that Respond-CAM achieves superior performance on visualizing the CNNs with 3D biomedical image inputs, and is able to get reasonably good results on visualizing the CNNs with natural image inputs. The Respond-CAM is an efficient and reliable approach for visualizing the CNN machinery, and is applicable to a wide variety of CNN model families and image analysis tasks. Our code is available at: https://github.com/xulabs/projects/tree/master/respond_cam.

摘要

卷积神经网络(CNN)已成为各种生物医学图像分析任务的强大工具,但对于CNN的运行机制缺乏可视化解释。在本文中,我们提出了一种新颖的算法——响应加权类激活映射(Respond-CAM),通过可视化对预测重要的输入区域,使基于CNN的模型具有可解释性,特别是对于生物医学3D成像数据输入。我们的方法使用流入卷积层的任何目标概念(例如目标类别的分数)的梯度。加权特征图被组合以生成一个热图,突出显示图像中用于预测目标概念的重要区域。我们证明了Respond-CAM具有更好的总和到分数属性,并验证了其相对于当前最先进方法在3D图像上的显著改进。我们对细胞电子冷冻断层扫描3D图像的测试表明,Respond-CAM在可视化具有3D生物医学图像输入的CNN方面表现出色,并且在可视化具有自然图像输入的CNN方面也能获得相当不错的结果。Respond-CAM是一种用于可视化CNN机制的高效且可靠的方法,适用于各种CNN模型家族和图像分析任务。我们的代码可在以下网址获取:https://github.com/xulabs/projects/tree/master/respond_cam。

相似文献

[1]
Respond-CAM: Analyzing Deep Models for 3D Imaging Data by Visualizations.

Med Image Comput Comput Assist Interv. 2018-9

[2]
Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging.

J Neurosci Methods. 2021-4-1

[3]
An interpretable decision-support model for breast cancer diagnosis using histopathology images.

J Pathol Inform. 2023-6-13

[4]
Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.

Med Phys. 2019-7-26

[5]
Optimized Dropkey-Based Grad-CAM: Toward Accurate Image Feature Localization.

Sensors (Basel). 2023-10-10

[6]
Visual Interpretation of Convolutional Neural Network Predictions in Classifying Medical Image Modalities.

Diagnostics (Basel). 2019-4-3

[7]
Cluster-CAM: Cluster-weighted visual interpretation of CNNs' decision in image classification.

Neural Netw. 2024-10

[8]
Volumetric macromolecule identification in cryo-electron tomograms using capsule networks.

BMC Bioinformatics. 2022-8-30

[9]
1D Gradient-Weighted Class Activation Mapping, Visualizing Decision Process of Convolutional Neural Network-Based Models in Spectroscopy Analysis.

Anal Chem. 2023-7-4

[10]
fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.

Neuroimage. 2020-12

引用本文的文献

[1]
A Survey on Explainable Artificial Intelligence (XAI) Techniques for Visualizing Deep Learning Models in Medical Imaging.

J Imaging. 2024-9-25

[2]
Comparing CAM Algorithms for the Identification of Salient Image Features in Iconography Artwork Analysis.

J Imaging. 2021-6-29

[3]
Computational methods for structural studies with cryogenic electron tomography.

Front Cell Infect Microbiol. 2023

[4]
BI-RADS-NET-V2: A Composite Multi-Task Neural Network for Computer-Aided Diagnosis of Breast Cancer in Ultrasound Images With Semantic and Quantitative Explanations.

IEEE Access. 2023

[5]
Explainable AI: A review of applications to neuroimaging data.

Front Neurosci. 2022-12-1

[6]
A Survey on Medical Explainable AI (XAI): Recent Progress, Explainability Approach, Human Interaction and Scoring System.

Sensors (Basel). 2022-10-21

[7]
Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review.

NPJ Digit Med. 2022-10-19

[8]
BI-RADS-NET: AN EXPLAINABLE MULTITASK LEARNING APPROACH FOR CANCER DIAGNOSIS IN BREAST ULTRASOUND IMAGES.

IEEE Int Workshop Mach Learn Signal Process. 2021-10

[9]
Weakly Supervised 3D Semantic Segmentation Using Cross-Image Consensus and Inter-Voxel Affinity Relations.

Proc IEEE Int Conf Comput Vis. 2021-10

[10]
Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond.

Inf Fusion. 2022-1

本文引用的文献

[1]
Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms.

Bioinformatics. 2017-7-15

[2]
Convolutional neural networks for automated annotation of cellular cryo-electron tomograms.

Nat Methods. 2017-10

[3]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

[4]
Visual proteomics of the human pathogen Leptospira interrogans.

Nat Methods. 2009-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索