Zhao Guannan, Zhou Bo, Wang Kaiwen, Jiang Rui, Xu Min
Department of Automation, Tsinghua University, Beijing, China.
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
Med Image Comput Comput Assist Interv. 2018 Sep;11070:485-492. doi: 10.1007/978-3-030-00928-1_55. Epub 2018 Sep 26.
The convolutional neural network (CNN) has become a powerful tool for various biomedical image analysis tasks, but there is a lack of visual explanation for the machinery of CNNs. In this paper, we present a novel algorithm, Respond-weighted Class Activation Mapping (Respond-CAM), for making CNN-based models interpretable by visualizing input regions that are important for predictions, especially for biomedical 3D imaging data inputs. Our method uses the gradients of any target concept (e.g. the score of target class) that flow into a convolutional layer. The weighted feature maps are combined to produce a heatmap that highlights the important regions in the image for predicting the target concept. We prove a preferable sum-to-score property of the Respond-CAM and verify its significant improvement on 3D images from the current state-of-the-art approach. Our tests on Cellular Electron Cryo-Tomography 3D images show that Respond-CAM achieves superior performance on visualizing the CNNs with 3D biomedical image inputs, and is able to get reasonably good results on visualizing the CNNs with natural image inputs. The Respond-CAM is an efficient and reliable approach for visualizing the CNN machinery, and is applicable to a wide variety of CNN model families and image analysis tasks. Our code is available at: https://github.com/xulabs/projects/tree/master/respond_cam.
卷积神经网络(CNN)已成为各种生物医学图像分析任务的强大工具,但对于CNN的运行机制缺乏可视化解释。在本文中,我们提出了一种新颖的算法——响应加权类激活映射(Respond-CAM),通过可视化对预测重要的输入区域,使基于CNN的模型具有可解释性,特别是对于生物医学3D成像数据输入。我们的方法使用流入卷积层的任何目标概念(例如目标类别的分数)的梯度。加权特征图被组合以生成一个热图,突出显示图像中用于预测目标概念的重要区域。我们证明了Respond-CAM具有更好的总和到分数属性,并验证了其相对于当前最先进方法在3D图像上的显著改进。我们对细胞电子冷冻断层扫描3D图像的测试表明,Respond-CAM在可视化具有3D生物医学图像输入的CNN方面表现出色,并且在可视化具有自然图像输入的CNN方面也能获得相当不错的结果。Respond-CAM是一种用于可视化CNN机制的高效且可靠的方法,适用于各种CNN模型家族和图像分析任务。我们的代码可在以下网址获取:https://github.com/xulabs/projects/tree/master/respond_cam。
Med Image Comput Comput Assist Interv. 2018-9
J Pathol Inform. 2023-6-13
Sensors (Basel). 2023-10-10
Diagnostics (Basel). 2019-4-3
BMC Bioinformatics. 2022-8-30
Front Cell Infect Microbiol. 2023
Front Neurosci. 2022-12-1
IEEE Int Workshop Mach Learn Signal Process. 2021-10
Proc IEEE Int Conf Comput Vis. 2021-10
Med Image Anal. 2017-7-26
Nat Methods. 2009-11