Suppr超能文献

基于代理的 COVID-19 病例预测模型在工作场所和大学中的拟合与验证。

Fitting and validation of an agent-based model for COVID-19 case forecasting in workplaces and universities.

机构信息

Verily Life Sciences, South San Francisco, California, United States of America.

出版信息

PLoS One. 2023 Mar 23;18(3):e0283517. doi: 10.1371/journal.pone.0283517. eCollection 2023.

Abstract

COVID-19 forecasting models have been critical in guiding decision-making on surveillance testing, social distancing, and vaccination requirements. Beyond influencing public health policies, an accurate COVID-19 forecasting model can impact community spread by enabling employers and university leaders to adapt worksite policies and practices to contain or mitigate outbreaks. While many such models have been developed for COVID-19 forecasting at the national, state, county, or city level, only a few models have been developed for workplaces and universities. Furthermore, COVID-19 forecasting models have rarely been validated against real COVID-19 case data. Here we present the systematic parameter fitting and validation of an agent-based compartment model for the forecasting of daily COVID-19 cases in single-site workplaces and universities with real-world data. Our approaches include manual fitting, where initial model parameters are chosen based on historical data, and automated fitting, where parameters are chosen based on candidate case trajectory simulations that result in best fit to prevalence estimation data. We use a 14-day fitting window and validate our approaches on 7- and 14-day testing windows with real COVID-19 case data from one employer. Our manual and automated fitting approaches accurately predicted COVID-19 case trends and outperformed the baseline model (no parameter fitting) across multiple scenarios, including a rising case trajectory (RMSLE values: 2.627 for baseline, 0.562 for manual fitting, 0.399 for automated fitting) and a decreasing case trajectory (RMSLE values: 1.155 for baseline, 0.537 for manual fitting, 0.778 for automated fitting). Our COVID-19 case forecasting model allows decision-makers at workplaces and universities to proactively respond to case trend forecasts, mitigate outbreaks, and promote safety.

摘要

COVID-19 预测模型在指导监测测试、社交距离和疫苗接种要求的决策方面发挥了关键作用。除了影响公共卫生政策外,准确的 COVID-19 预测模型还可以通过使雇主和大学校长能够调整工作场所政策和实践来控制或减轻疫情爆发,从而影响社区传播。虽然已经为 COVID-19 在国家、州、县或市一级的预测开发了许多模型,但只为工作场所和大学开发了少数模型。此外,很少有 COVID-19 预测模型针对实际 COVID-19 病例数据进行验证。在这里,我们提出了一种基于代理的隔间模型的系统参数拟合和验证,用于预测单一地点工作场所和大学的每日 COVID-19 病例,该模型使用真实世界的数据。我们的方法包括手动拟合,其中初始模型参数是根据历史数据选择的,以及自动拟合,其中参数是根据导致最佳拟合流行率估计数据的候选病例轨迹模拟选择的。我们使用 14 天拟合窗口,并使用来自一个雇主的真实 COVID-19 病例数据在 7 天和 14 天测试窗口上验证我们的方法。我们的手动和自动拟合方法准确地预测了 COVID-19 病例趋势,并在多个场景中表现优于基线模型(无参数拟合),包括上升病例轨迹(RMSLE 值:基线为 2.627,手动拟合为 0.562,自动拟合为 0.399)和下降病例轨迹(RMSLE 值:基线为 1.155,手动拟合为 0.537,自动拟合为 0.778)。我们的 COVID-19 病例预测模型使工作场所和大学校园的决策者能够主动应对病例趋势预测、减轻疫情爆发并促进安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be2/10035834/cb0b99670391/pone.0283517.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验