Suppr超能文献

基于主体的COVID-19建模:验证、分析与建议。

An Agent-Based Modeling of COVID-19: Validation, Analysis, and Recommendations.

作者信息

Shamil Md Salman, Farheen Farhanaz, Ibtehaz Nabil, Khan Irtesam Mahmud, Rahman M Sohel

机构信息

Department of CSE, BUET, ECE Building, West Palasi, Dhaka 1205 Bangladesh.

出版信息

Cognit Comput. 2021 Feb 19:1-12. doi: 10.1007/s12559-020-09801-w.

Abstract

UNLABELLED

The coronavirus disease 2019 (COVID-19) has resulted in an ongoing pandemic worldwide. Countries have adopted non-pharmaceutical interventions (NPI) to slow down the spread. This study proposes an agent-based model that simulates the spread of COVID-19 among the inhabitants of a city. The agent-based model can be accommodated for any location by integrating parameters specific to the city. The simulation gives the number of total COVID-19 cases. Considering each person as an agent susceptible to COVID-19, the model causes infected individuals to transmit the disease via various actions performed every hour. The model is validated by comparing the simulation to the real data of Ford County, KS, USA. Different interventions, including contact tracing, are applied on a scaled-down version of New York City, USA, and the parameters that lead to a controlled epidemic are determined. Our experiments suggest that contact tracing via smartphones with more than 60% of the population owning a smartphone combined with city-wide lockdown results in the effective reproduction number ( ) to fall below 1 within 3 weeks of intervention. For 75% or more smartphone users, new infections are eliminated, and the spread is contained within 3 months of intervention. Contact tracing accompanied with early lockdown can suppress the epidemic growth of COVID-19 completely with sufficient smartphone owners. In places where it is difficult to ensure a high percentage of smartphone ownership, tracing only emergency service providers during a lockdown can go a long way to contain the spread.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at (10.1007/s12559-020-09801-w).

摘要

未标注

2019冠状病毒病(COVID-19)已在全球范围内引发持续的大流行。各国已采取非药物干预措施(NPI)来减缓传播速度。本研究提出了一种基于主体的模型,用于模拟COVID-19在城市居民中的传播。通过整合特定于城市的参数,该基于主体的模型可适用于任何地点。模拟给出了COVID-19病例总数。将每个人视为易感染COVID-19的主体,该模型使受感染个体通过每小时执行的各种行为传播疾病。通过将模拟结果与美国堪萨斯州福特县的实际数据进行比较来验证该模型。在美国纽约市的一个缩小版本上应用了包括接触者追踪在内的不同干预措施,并确定了导致疫情得到控制的参数。我们的实验表明,在超过60%的人口拥有智能手机的情况下,通过智能手机进行接触者追踪并结合全市范围的封锁,会使有效再生数( )在干预后3周内降至1以下。对于75%或更多智能手机用户的情况,新感染病例会被消除,传播在干预后3个月内得到控制。在有足够数量智能手机用户的情况下,接触者追踪伴随早期封锁能够完全抑制COVID-19的疫情增长。在难以确保高比例智能手机拥有率的地方,在封锁期间仅追踪紧急服务提供者在很大程度上有助于控制传播。

补充信息

在线版本包含可在(10.1007/s12559-020-09801-w)获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f44/7893846/fddc2d6e318f/12559_2020_9801_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验