Medical University of Silesia in Katowice, Katowice, Silesia, Poland.
Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland.
Physiol Meas. 2023 Apr 12;44(4). doi: 10.1088/1361-6579/acc725.
Most current algorithms for detecting atrial fibrillation (AF) rely on heart rate variability (HRV), and only a few studies analyse the variability of photopletysmography (PPG) waveform. This study aimed to compare morphological features of the PPG curve in patients with AF to those presenting a normal sinus rhythm (NSR) and evaluate their usefulness in AF detection.10 min PPG signals were obtained from patients with persistent/paroxysmal AF and NSR. Nine morphological parameters (1/Δ), Pulse Width [PW], augmentation index [AI], b/a, e/a, [b-e]/a, crest time [CT], inflection point area [IPA], Area and five HRV parameters (heart rate [HR], Shannon entropy [ShE], root mean square of the successive differences [RMSSD], number of pairs of consecutive systolic peaks [-] that differ by more than 50 ms [NN50], standard deviation of the-intervals [SDNN]) were calculated.Eighty subjects, including 33 with AF and 47 with NSR were recruited. In univariate analysis five morphological features (1/Δ,< 0.001; b/a,< 0.001; [b-e]/a,< 0.001; CT,= 0.011 and Area,< 0.001) and all HRV parameters (= 0.01 for HR and< 0.001 for others) were significantly different between the study groups. In the stepwise multivariate model (Area under the curve [AUC] = 0.988 [0.974-1.000]), three morphological parameters (PW,< 0.001; e/a,= 0.011; (b-e)/a,< 0.001) and three of HRV parameters (ShE,= 0.01; NN50,< 0.001, HR,= 0.01) were significant.There are significant differences between AF and NSR, PPG waveform, which are useful in AF detection algorithm. Moreover adding those features to HRV-based algorithms may improve their specificity and sensitivity.
目前大多数用于检测心房颤动 (AF) 的算法都依赖于心率变异性 (HRV),只有少数研究分析光体积描记图 (PPG) 波形的可变性。本研究旨在比较 AF 患者与窦性心律 (NSR) 患者 PPG 曲线的形态特征,并评估其在 AF 检测中的应用价值。从持续性/阵发性 AF 和 NSR 患者中获得 10 分钟的 PPG 信号。计算了 9 个形态参数(1/Δ)、脉搏波宽 [PW]、增强指数 [AI]、b/a、e/a、[b-e]/a、峰时间 [CT]、拐点面积 [IPA]、面积和 5 个 HRV 参数(心率 [HR]、香农熵 [ShE]、连续差值的均方根 [RMSSD]、连续收缩峰差异超过 50ms 的对数 [-]数 [NN50]、间隔标准差 [SDNN])。共纳入 80 例患者,其中 33 例为 AF,47 例为 NSR。在单变量分析中,5 个形态特征(1/Δ,<0.001;b/a,<0.001;[b-e]/a,<0.001;CT,=0.011,Area,<0.001)和所有 HRV 参数(HR 为=0.01,其他均为<0.001)在研究组之间有显著差异。在逐步多变量模型中(曲线下面积 [AUC] = 0.988 [0.974-1.000]),3 个形态参数(PW,<0.001;e/a,=0.011;(b-e)/a,<0.001)和 3 个 HRV 参数(ShE,=0.01;NN50,<0.001,HR,=0.01)有统计学意义。AF 与 NSR、PPG 波形之间存在显著差异,这些差异可用于 AF 检测算法。此外,将这些特征添加到基于 HRV 的算法中可能会提高其特异性和敏感性。