Suppr超能文献

深度学习方法在光电容积脉搏波信号检测心房颤动中的应用:算法开发研究。

Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study.

机构信息

Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.

School of Electrical Engineering, KAIST, Daejeon, Republic of Korea.

出版信息

JMIR Mhealth Uhealth. 2019 Jun 6;7(6):e12770. doi: 10.2196/12770.

Abstract

BACKGROUND

Wearable devices have evolved as screening tools for atrial fibrillation (AF). A photoplethysmographic (PPG) AF detection algorithm was developed and applied to a convenient smartphone-based device with good accuracy. However, patients with paroxysmal AF frequently exhibit premature atrial complexes (PACs), which result in poor unmanned AF detection, mainly because of rule-based or handcrafted machine learning techniques that are limited in terms of diagnostic accuracy and reliability.

OBJECTIVE

This study aimed to develop deep learning (DL) classifiers using PPG data to detect AF from the sinus rhythm (SR) in the presence of PACs after successful cardioversion.

METHODS

We examined 75 patients with AF who underwent successful elective direct-current cardioversion (DCC). Electrocardiogram and pulse oximetry data over a 15-min period were obtained before and after DCC and labeled as AF or SR. A 1-dimensional convolutional neural network (1D-CNN) and recurrent neural network (RNN) were chosen as the 2 DL architectures. The PAC indicator estimated the burden of PACs on the PPG dataset. We defined a metric called the confidence level (CL) of AF or SR diagnosis and compared the CLs of true and false diagnoses. We also compared the diagnostic performance of 1D-CNN and RNN with previously developed AF detectors (support vector machine with root-mean-square of successive difference of RR intervals and Shannon entropy, autocorrelation, and ensemble by combining 2 previous methods) using 10 5-fold cross-validation processes.

RESULTS

Among the 14,298 training samples containing PPG data, 7157 samples were obtained during the post-DCC period. The PAC indicator estimated 29.79% (2132/7157) of post-DCC samples had PACs. The diagnostic accuracy of AF versus SR was 99.32% (70,925/71,410) versus 95.85% (68,602/71,570) in 1D-CNN and 98.27% (70,176/71,410) versus 96.04% (68,736/71,570) in RNN methods. The area under receiver operating characteristic curves of the 2 DL classifiers was 0.998 (95% CI 0.995-1.000) for 1D-CNN and 0.996 (95% CI 0.993-0.998) for RNN, which were significantly higher than other AF detectors (P<.001). If we assumed that the dataset could emulate a sufficient number of patients in training, both DL classifiers improved their diagnostic performances even further especially for the samples with a high burden of PACs. The average CLs for true versus false classification were 98.56% versus 78.75% for 1D-CNN and 98.37% versus 82.57% for RNN (P<.001 for all cases).

CONCLUSIONS

New DL classifiers could detect AF using PPG monitoring signals with high diagnostic accuracy even with frequent PACs and could outperform previously developed AF detectors. Although diagnostic performance decreased as the burden of PACs increased, performance improved when samples from more patients were trained. Moreover, the reliability of the diagnosis could be indicated by the CL. Wearable devices sensing PPG signals with DL classifiers should be validated as tools to screen for AF.

摘要

背景

可穿戴设备已发展成为心房颤动(AF)的筛查工具。已经开发出一种光电容积脉搏波(PPG)AF 检测算法,并将其应用于一种方便的基于智能手机的设备,该设备具有良好的准确性。然而,阵发性 AF 患者经常出现过早的房性早搏(PACs),这导致无人值守的 AF 检测效果不佳,主要是因为基于规则或手工制作的机器学习技术在诊断准确性和可靠性方面存在局限性。

目的

本研究旨在开发使用 PPG 数据的深度学习(DL)分类器,以在成功电复律后检测窦性节律(SR)中的 AF,同时存在 PACs。

方法

我们检查了 75 例接受择期直流电复律(DCC)的 AF 患者。在 DCC 前后获得了 15 分钟的心电图和脉搏血氧饱和度数据,并标记为 AF 或 SR。选择一维卷积神经网络(1D-CNN)和递归神经网络(RNN)作为两种 DL 架构。PAC 指标估计了 PACs 对 PPG 数据集的负担。我们定义了一个称为 AF 或 SR 诊断置信度(CL)的度量,并比较了真实和错误诊断的 CL。我们还使用 10 个 5 倍交叉验证过程,将 1D-CNN 和 RNN 的诊断性能与之前开发的 AF 检测器(使用 RR 间期连续差的均方根和香农熵、自相关以及结合两种方法的集合的支持向量机)进行了比较。

结果

在包含 PPG 数据的 14298 个训练样本中,有 7157 个样本是在 DCC 后获得的。PAC 指标估计,29.79%(2132/7157)的 DCC 后样本存在 PACs。1D-CNN 中 AF 与 SR 的诊断准确率分别为 99.32%(70925/71410)和 95.85%(68602/71570),RNN 方法分别为 98.27%(70176/71410)和 96.04%(68736/71570)。两种 DL 分类器的受试者工作特征曲线下面积(AUC)分别为 0.998(95%置信区间 0.995-1.000)和 0.996(95%置信区间 0.993-0.998),均显著高于其他 AF 检测器(P<.001)。如果我们假设数据集可以模拟足够数量的患者进行训练,那么这两种 DL 分类器都可以进一步提高诊断性能,特别是对于 PACs 负担较高的样本。真阳性与假阳性分类的平均 CL 分别为 98.56%与 78.75%(P<.001)和 98.37%与 82.57%(P<.001)。

结论

新的 DL 分类器可以使用 PPG 监测信号以较高的诊断准确性检测 AF,即使存在频繁的 PACs,也可以优于以前开发的 AF 检测器。尽管诊断性能随着 PAC 负担的增加而降低,但当更多患者的样本进行训练时,性能会有所提高。此外,诊断的可靠性可以通过 CL 来指示。具有 DL 分类器的可穿戴设备感应 PPG 信号应该被验证为筛查 AF 的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/470c/6592499/6fb09010cf27/mhealth_v7i6e12770_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验