Suppr超能文献

预测分析对肾脏影响的实验提供了接受决策。

An experiment on the impact of predictive analytics on kidney offers acceptance decisions.

机构信息

Discovery Lab,Applied Intelligence,Accenture,Washington,DC,USA; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.

United Network for Organ Sharing, Richmond, Virginia, USA.

出版信息

Am J Transplant. 2023 Jul;23(7):957-965. doi: 10.1016/j.ajt.2023.03.010. Epub 2023 Mar 22.

Abstract

Because of the breadth of factors that might affect kidney transplant decisions to accept an organ or wait for another, presumably "better" offer, a high degree of heterogeneity in decision making exists among transplant surgeons and hospitals. These decisions do not typically include objective predictions regarding the future availability of equivalent or better-quality organs or the likelihood of patient death while waiting for another organ. To investigate the impact of displaying such predictions on organ donation decision making, we conducted a statistically designed experiment involving 53 kidney transplant professionals, in which kidney offers were presented via an online application and systematically altered to observe the effects on decision making. We found that providing predictive analytics for time-to-better offers and patient mortality improved decision consensus and decision-maker confidence in their decisions. Providing a visual display of the patient's mortality slope under accept/reject conditions shortened the time-to-decide but did not have an impact on the decision itself. Presenting the risk of death in a loss frame as opposed to a gain frame improved decision consensus and decision confidence. Patient-specific predictions surrounding future organ offers and mortality may improve decision quality, confidence, and expediency while improving organ utilization and patient outcomes.

摘要

由于可能影响接受器官或等待另一个“更好”供体的肾脏移植决策的因素广泛,因此移植外科医生和医院在决策方面存在很大的异质性。这些决策通常不包括关于未来同等或更高质量器官的可获得性的客观预测,也不包括在等待另一个器官期间患者死亡的可能性。为了研究展示此类预测对器官捐赠决策的影响,我们进行了一项涉及 53 名肾脏移植专业人员的统计设计实验,其中通过在线应用程序呈现肾脏供体,并对其进行系统更改,以观察对决策的影响。我们发现,提供关于更好供体的时间和患者死亡率的预测分析可以提高决策共识和决策者对其决策的信心。提供接受/拒绝条件下患者死亡率的直观显示可以缩短决策时间,但对决策本身没有影响。将死亡风险以损失框架而不是收益框架呈现可以提高决策共识和决策信心。围绕未来器官供体和死亡率的患者特定预测可能会提高决策质量、信心和决策速度,同时提高器官利用率和患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验