Suppr超能文献

磁场时空操控的模块化设计工程菌用于精准肿瘤免疫治疗。

Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field.

机构信息

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.

Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.

出版信息

Nat Commun. 2023 Mar 23;14(1):1606. doi: 10.1038/s41467-023-37225-1.

Abstract

Micro-nano biorobots based on bacteria have demonstrated great potential for tumor diagnosis and treatment. The bacterial gene expression and drug release should be spatiotemporally controlled to avoid drug release in healthy tissues and undesired toxicity. Herein, we describe an alternating magnetic field-manipulated tumor-homing bacteria developed by genetically modifying engineered Escherichia coli with FeO@lipid nanocomposites. After accumulating in orthotopic colon tumors in female mice, the paramagnetic FeO nanoparticles enable the engineered bacteria to receive and convert magnetic signals into heat, thereby initiating expression of lysis proteins under the control of a heat-sensitive promoter. The engineered bacteria then lyse, releasing its anti-CD47 nanobody cargo, that is pre-expressed and within the bacteria. The robust immunogenicity of bacterial lysate cooperates with anti-CD47 nanobody to activate both innate and adaptive immune responses, generating robust antitumor effects against not only orthotopic colon tumors but also distal tumors in female mice. The magnetically engineered bacteria also enable the constant magnetic field-controlled motion for enhanced tumor targeting and increased therapeutic efficacy. Thus, the gene expression and drug release behavior of tumor-homing bacteria can be spatiotemporally manipulated in vivo by a magnetic field, achieving tumor-specific CD47 blockage and precision tumor immunotherapy.

摘要

基于细菌的微纳机器人在肿瘤的诊断和治疗方面显示出巨大的潜力。为了避免药物在健康组织中的释放和不必要的毒性,需要对细菌的基因表达和药物释放进行时空控制。在此,我们通过基因工程改造工程大肠杆菌,用 FeO@脂质纳米复合材料构建了一种可被交变磁场操纵的肿瘤归巢细菌。在雌性小鼠的原位结肠肿瘤中积累后,顺磁性 FeO 纳米颗粒使工程细菌能够接收并将磁信号转化为热量,从而在热敏启动子的控制下启动裂解蛋白的表达。然后,工程细菌裂解,释放预先表达并在细菌内的抗 CD47 纳米抗体货物。细菌裂解物的强大免疫原性与抗 CD47 纳米抗体协同作用,激活先天和适应性免疫反应,不仅对原位结肠肿瘤,而且对雌性小鼠的远端肿瘤都产生了强大的抗肿瘤作用。经过磁场工程改造的细菌还可以进行恒磁场控制的运动,从而增强肿瘤靶向性并提高治疗效果。因此,磁场可以在体内对肿瘤归巢细菌的基因表达和药物释放行为进行时空操纵,实现肿瘤特异性 CD47 阻断和精准肿瘤免疫治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb8/10036336/f3ac9436c6c3/41467_2023_37225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验