Egaña Alvaro F, Ehrenfeld Alejandro, Curotto Franco, Sánchez-Pérez Juan F, Silva Jorge F
Advanced Laboratory for Geostatistical Supercomputing - ALGES, Advanced Mining Technology Center - AMTC, University of Chile, Santiago, Chile.
Department of Information Decision Group, Electrical Engineering, University of Chile, Santiago, Chile.
Sci Rep. 2024 Aug 20;14(1):19308. doi: 10.1038/s41598-024-69732-6.
This paper introduces a new latent variable probabilistic framework for representing spectral data of high spatial and spectral dimensionality, such as hyperspectral images. We use a generative Bayesian model to represent the image formation process and provide interpretable and efficient inference and learning methods. Surprisingly, our approach can be implemented with simple tools and does not require extensive training data, detailed pixel-by-pixel labeling, or significant computational resources. Numerous experiments with simulated data and real benchmark scenarios show encouraging image classification performance. These results validate the unique ability of our framework to discriminate complex hyperspectral images, irrespective of the presence of highly discriminative spectral signatures.
本文介绍了一种新的潜在变量概率框架,用于表示高空间和光谱维度的光谱数据,如高光谱图像。我们使用生成式贝叶斯模型来表示图像形成过程,并提供可解释且高效的推理和学习方法。令人惊讶的是,我们的方法可以用简单的工具实现,不需要大量的训练数据、逐像素的详细标注或大量的计算资源。在模拟数据和真实基准场景下进行的大量实验显示出令人鼓舞的图像分类性能。这些结果验证了我们框架独特的能力,即能够区分复杂的高光谱图像,而不管是否存在高度有区分性的光谱特征。