Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic.
Sci Rep. 2023 Mar 23;13(1):4795. doi: 10.1038/s41598-023-31873-5.
Climate reanalyses complement traditional surface-based measurements and offer unprecedented coverage over previously inaccessible or unmonitored regions. Even though these have improved the quantification of the global water cycle, their varying performances and uncertainties limit their applicability. Herein, we discuss how a framework encompassing precipitation, evaporation, their difference, and their sum could further constrain uncertainty by unveiling discrepancies otherwise overlooked. Ahead, we physically define precipitation plus evaporation to describe the global water cycle fluxes in four reanalysis data sets (20CR v3, ERA-20C, ERA5, and NCEP1). Among them, we observe four different responses to the temperature increase between 1950-2010, with ERA5 showing the best agreement with the water cycle acceleration hypothesis. Our results show that implementing the framework proposed can improve the evaluation of reanalyses' performance and enhance our understanding of the water cycle changes on a global scale.
气候再分析补充了传统的基于地面的测量方法,为以前无法进入或监测不到的地区提供了前所未有的覆盖范围。尽管这些方法提高了对全球水循环的量化程度,但它们不同的性能和不确定性限制了它们的适用性。在此,我们讨论了如何通过揭示否则被忽视的差异,利用包含降水、蒸发、它们的差异和总和的框架进一步限制不确定性。在这之前,我们从物理上定义降水加蒸发来描述四个再分析数据集(20CR v3、ERA-20C、ERA5 和 NCEP1)中的全球水循环通量。在这四个数据集,我们观察到了对 1950-2010 年间气温升高的四种不同响应,其中 ERA5 与水循环加速假说的一致性最好。我们的研究结果表明,实施所提出的框架可以提高对再分析性能的评估,并增强我们对全球范围内水循环变化的理解。