College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
Key Laboratory of Big Data Fusion Analysis and Application of Shanxi Province, Taiyuan, 030024, China.
Med Biol Eng Comput. 2023 Jul;61(7):1857-1873. doi: 10.1007/s11517-023-02816-z. Epub 2023 Mar 24.
Heart failure is a life-threatening syndrome that is diagnosed in 3.6 million people worldwide each year. We propose a deep fusion learning model (DFL-IMP) that uses time series and category data from electronic health records to predict in-hospital mortality in patients with heart failure. We considered 41 time series features (platelets, white blood cells, urea nitrogen, etc.) and 17 category features (gender, insurance, marital status, etc.) as predictors, all of which were available within the time of the patient's last hospitalization, and a total of 7696 patients participated in the observational study. Our model was evaluated against different time windows. The best performance was achieved with an AUC of 0.914 when the observation window was 5 days and the prediction window was 30 days. Outperformed other baseline models including LR (0.708), RF (0.717), SVM (0.675), LSTM (0.757), GRU (0.759), GRU-U (0.766) and MTSSP (0.770). This tool allows us to predict the expected pathway of heart failure patients and intervene early in the treatment process, which has significant implications for improving the life expectancy of heart failure patients.
心力衰竭是一种危及生命的综合征,全球每年有 360 万人被诊断出患有该病。我们提出了一种深度融合学习模型(DFL-IMP),该模型使用电子健康记录中的时间序列和类别数据来预测心力衰竭患者的住院死亡率。我们考虑了 41 个时间序列特征(血小板、白细胞、尿素氮等)和 17 个类别特征(性别、保险、婚姻状况等)作为预测因子,这些特征均在患者最后一次住院期间可用,共有 7696 名患者参与了观察性研究。我们的模型针对不同的时间窗口进行了评估。当观察窗口为 5 天且预测窗口为 30 天时,模型的 AUC 达到 0.914,取得了最佳性能。该模型优于其他基线模型,包括 LR(0.708)、RF(0.717)、SVM(0.675)、LSTM(0.757)、GRU(0.759)、GRU-U(0.766)和 MTSSP(0.770)。该工具使我们能够预测心力衰竭患者的预期病程,并在治疗过程中尽早进行干预,这对提高心力衰竭患者的预期寿命具有重要意义。