Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.
Stud Health Technol Inform. 2024 Aug 22;316:542-546. doi: 10.3233/SHTI240471.
Heart Failure (HF) is a life-threatening condition. It affects more than 64 million people worldwide. Early diagnosis of HF is extremely crucial. In this study, we propose utilization of machine learning (ML) models to predict severity of HF from primary Electronic Health Records (EHRs). We used a public dataset of 2008 HF patients for the study. Gaussian Naive Bayes, Random Forest and CatBoost methods were used for prediction. The study shows that CatBoost works best for the goal. In addition to that, the largest contributors for tree-based models harmonize well with clinically important parameters, which exhibits the trustworthiness of these models. Hence, we conclude that utilization of ML methods on primary EHRs is a promising step for time-efficient diagnosis of HF patients.
心力衰竭(HF)是一种危及生命的疾病。它影响着全球超过 6400 万人。HF 的早期诊断至关重要。在这项研究中,我们提出利用机器学习(ML)模型从主要的电子健康记录(EHR)中预测 HF 的严重程度。我们使用了一个 2008 年 HF 患者的公共数据集进行研究。使用了高斯朴素贝叶斯、随机森林和 CatBoost 方法进行预测。研究表明,CatBoost 最适合该目标。除此之外,基于树的模型的最大贡献者与临床重要参数协调一致,这表明这些模型是可靠的。因此,我们得出结论,在主要的 EHR 上使用 ML 方法是对 HF 患者进行高效诊断的有前途的步骤。