Suppr超能文献

利用 CRISPR/Cas9 在人细胞系模型中模拟人类癌症易感性综合征。

Modeling human cancer predisposition syndromes using CRISPR/Cas9 in human cell line models.

机构信息

Department of Pediatrics, University of Minnesota Twin Cities, Minneapolis, USA.

Comparative Molecular Biosciences PhD Program, University of Minnesota Twin Cities, Minneapolis, USA.

出版信息

Genes Chromosomes Cancer. 2023 Sep;62(9):493-500. doi: 10.1002/gcc.23140. Epub 2023 Apr 19.

Abstract

The advancement of CRISPR mediated gene engineering provides an opportunity to improve upon preclinical human cell line models of cancer predisposing syndromes. This review focuses on using CRISPR/Cas9 genome editing tools to model various human cancer predisposition syndromes. We examine the genetic mutations associated with neurofibromatosis type 1, Li-Fraumeni syndrome, Gorlin syndrome, BRCA mutant breast and ovarian cancers, and APC mutant cancers. Furthermore, we discuss the possibilities of using next-generation CRISPR-derived precision gene editing tools to introduce a variety of genetic lesions into human cell lines. The goal is to improve the quality of preclinical models surrounding these cancer predisposition syndromes through dissecting the effects of these mutations on the development of cancer and to provide new insights into the underlying mechanisms of these cancer predisposition syndromes. These studies demonstrate the continued utility and improvement of CRISPR/Cas9-induced human cell line models in studying the genetic basis of cancer.

摘要

CRISPR 介导的基因工程的进步为改善癌症易感综合征的临床前人类细胞系模型提供了机会。本综述重点介绍了使用 CRISPR/Cas9 基因组编辑工具来模拟各种人类癌症易感性综合征。我们研究了与神经纤维瘤病 1 型、Li-Fraumeni 综合征、Gorlin 综合征、BRCA 突变型乳腺癌和卵巢癌以及 APC 突变型癌症相关的遗传突变。此外,我们还讨论了使用下一代基于 CRISPR 的精确基因编辑工具将各种遗传损伤引入人类细胞系的可能性。目标是通过剖析这些突变对癌症发展的影响来提高这些癌症易感性综合征的临床前模型的质量,并为这些癌症易感性综合征的潜在机制提供新的见解。这些研究表明,CRISPR/Cas9 诱导的人类细胞系模型在研究癌症遗传基础方面具有持续的实用性和改进。

相似文献

1
Modeling human cancer predisposition syndromes using CRISPR/Cas9 in human cell line models.
Genes Chromosomes Cancer. 2023 Sep;62(9):493-500. doi: 10.1002/gcc.23140. Epub 2023 Apr 19.
2
CRISPR/Cas9-Mediated Genome Editing in Cancer Therapy.
Int J Mol Sci. 2023 Nov 15;24(22):16325. doi: 10.3390/ijms242216325.
3
CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
Cardiovasc Res. 2020 Apr 1;116(5):894-907. doi: 10.1093/cvr/cvz250.
4
CRISPR-Cas9: from Genome Editing to Cancer Research.
Int J Biol Sci. 2016 Nov 4;12(12):1427-1436. doi: 10.7150/ijbs.17421. eCollection 2016.
5
Current applications and future perspective of CRISPR/Cas9 gene editing in cancer.
Mol Cancer. 2022 Feb 21;21(1):57. doi: 10.1186/s12943-022-01518-8.
6
CRISPR/Cas9 Genome Engineering in Human Pluripotent Stem Cells for Modeling of Neurological Disorders.
Methods Mol Biol. 2021;2352:237-251. doi: 10.1007/978-1-0716-1601-7_16.
7
Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing.
J Mol Med (Berl). 2020 May;98(5):615-632. doi: 10.1007/s00109-020-01893-z. Epub 2020 Mar 20.
8
CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
Life Sci. 2021 Feb 15;267:118969. doi: 10.1016/j.lfs.2020.118969. Epub 2020 Dec 29.
9
Precision genome editing in the CRISPR era.
Biochem Cell Biol. 2017 Apr;95(2):187-201. doi: 10.1139/bcb-2016-0137. Epub 2016 Sep 29.

引用本文的文献

1
The evolving landscape of NF gene therapy: Hurdles and opportunities.
Mol Ther Nucleic Acids. 2025 Feb 3;36(1):102475. doi: 10.1016/j.omtn.2025.102475. eCollection 2025 Mar 11.
2
Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells.
Cancer Control. 2024 Jan-Dec;31:10732748241270564. doi: 10.1177/10732748241270564.
4
Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy.
Mol Cancer. 2023 Nov 28;22(1):189. doi: 10.1186/s12943-023-01873-0.

本文引用的文献

1
Heritable defects in telomere and mitotic function selectively predispose to sarcomas.
Science. 2023 Jan 20;379(6629):253-260. doi: 10.1126/science.abj4784. Epub 2023 Jan 19.
2
Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases.
Nat Biotechnol. 2023 Jul;41(7):968-979. doi: 10.1038/s41587-022-01574-x. Epub 2023 Jan 2.
3
Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases.
Nat Biotechnol. 2023 Apr;41(4):500-512. doi: 10.1038/s41587-022-01527-4. Epub 2022 Nov 24.
4
STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells.
Cell Rep Methods. 2022 Sep 22;2(10):100300. doi: 10.1016/j.crmeth.2022.100300. eCollection 2022 Oct 24.
5
Precise DNA cleavage using CRISPR-SpRYgests.
Nat Biotechnol. 2023 Mar;41(3):409-416. doi: 10.1038/s41587-022-01492-y. Epub 2022 Oct 6.
6
Engineered CRISPR prime editors with compact, untethered reverse transcriptases.
Nat Biotechnol. 2023 Mar;41(3):337-343. doi: 10.1038/s41587-022-01473-1. Epub 2022 Sep 26.
7
Identification of Germinal Neurofibromin Hotspots.
Biomedicines. 2022 Aug 21;10(8):2044. doi: 10.3390/biomedicines10082044.
9
Living biobank-based cancer organoids: prospects and challenges in cancer research.
Cancer Biol Med. 2022 Jul 21;19(7):965-82. doi: 10.20892/j.issn.2095-3941.2021.0621.
10
Breast cancer risks associated with missense variants in breast cancer susceptibility genes.
Genome Med. 2022 May 18;14(1):51. doi: 10.1186/s13073-022-01052-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验