Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Adv Mater. 2023 Jun;35(26):e2210894. doi: 10.1002/adma.202210894. Epub 2023 May 12.
Thin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in-plane ferroelectric material that exhibits a giant nonlinear optical effect, group-IV monochalcogenide SnSe, is reported. Nanometer-scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical-vapor-deposited SnSe by lateral piezoresponse force microscopy. Atomic structure characterization reveals both parallel and antiparallel stacking of neighboring van der Waals ferroelectric layers, leading to ferroelectric or antiferroelectric ordering. Ferroelectric domains exhibit giant nonlinear optical activity due to coherent enhancement of second-harmonic fields and the as-resulted second-harmonic generation was observed to be 100 times more intense than monolayer WS . This work demonstrates in-plane ferroelectric ordering and giant nonlinear optical activity in SnSe, which paves the way for applications in on-chip nonlinear optical components and nonvolatile memory devices.
超薄铁电材料在小型非易失性存储器以及非线性光学和光电设备方面具有广阔的应用前景。本文报道了一种具有巨大非线性光学效应的超薄层铁电材料——IV 族单卤化物 SnSe。通过横向压电力显微镜,在物理气相沉积 SnSe 中揭示了具有≈90°/270°孪晶界或≈180°畴壁的纳米级铁电畴。原子结构特征表明,相邻范德华铁电层存在平行和反平行堆积,导致铁电或反铁电有序。由于第二谐波场的相干增强,铁电畴表现出巨大的非线性光学活性,从而观察到的二次谐波产生强度比单层 WS2 高出 100 倍。这项工作证明了 SnSe 中的面内铁电有序和巨大的非线性光学活性,为在片上非线性光学元件和非易失性存储器件中的应用铺平了道路。