Weidner Felix M, Schwab Julian D, Wölk Sabine, Rupprecht Felix, Ikonomi Nensi, Werle Silke D, Hoffmann Steve, Kühl Michael, Kestler Hans A
Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany.
International Graduate School of Molecular Medicine, Ulm University, 89081 Ulm, Germany.
Patterns (N Y). 2023 Mar 10;4(3):100705. doi: 10.1016/j.patter.2023.100705.
The dynamics of cellular mechanisms can be investigated through the analysis of networks. One of the simplest but most popular modeling strategies involves logic-based models. However, these models still face exponential growth in simulation complexity compared with a linear increase in nodes. We transfer this modeling approach to quantum computing and use the upcoming technique in the field to simulate the resulting networks. Leveraging logic modeling in quantum computing has many benefits, including complexity reduction and quantum algorithms for systems biology tasks. To showcase the applicability of our approach to systems biology tasks, we implemented a model of mammalian cortical development. Here, we applied a quantum algorithm to estimate the tendency of the model to reach particular stable conditions and further revert dynamics. Results from two actual quantum processing units and a noisy simulator are presented, and current technical challenges are discussed.
细胞机制的动力学可以通过网络分析来研究。最简单但最流行的建模策略之一涉及基于逻辑的模型。然而,与节点数量的线性增加相比,这些模型在模拟复杂性方面仍面临指数增长。我们将这种建模方法应用于量子计算,并使用该领域即将出现的技术来模拟由此产生的网络。在量子计算中利用逻辑建模有许多好处,包括降低复杂性以及用于系统生物学任务的量子算法。为了展示我们的方法在系统生物学任务中的适用性,我们实现了一个哺乳动物皮层发育模型。在这里,我们应用一种量子算法来估计该模型达到特定稳定状态并进一步恢复动力学的趋势。给出了来自两个实际量子处理单元和一个噪声模拟器的结果,并讨论了当前的技术挑战。