Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy.
Int J Lang Commun Disord. 2024 Jan-Feb;59(1):110-122. doi: 10.1111/1460-6984.12870. Epub 2023 Mar 24.
In the past few years there has been a growing interest in the employment of verbal productions as digital biomarkers, namely objective, quantifiable behavioural data that can be collected and measured by means of digital devices, allowing for a low-cost pathology detection, classification and monitoring. Numerous research papers have been published on the automatic detection of subtle verbal alteration, starting from written texts, raw speech recordings and transcripts, and such linguistic analysis has been singled out as a cost-effective method for diagnosing dementia and other medical conditions common among elderly patients (e.g., cognitive dysfunctions associated with metabolic disorders, dysarthria).
To provide a critical appraisal and synthesis of evidence concerning the application of natural language processing (NLP) techniques for clinical purposes in the geriatric population. In particular, we discuss the state of the art on studying language in healthy and pathological ageing, focusing on the latest research efforts to build non-intrusive language-based tools for the early identification of cognitive frailty due to dementia. We also discuss some challenges and open problems raised by this approach.
METHODS & PROCEDURES: We performed a scoping review to examine emerging evidence about this novel domain. Potentially relevant studies published up to November 2021 were identified from the databases of MEDLINE, Cochrane and Web of Science. We also browsed the proceedings of leading international conferences (e.g., ACL, COLING, Interspeech, LREC) from 2017 to 2021, and checked the reference lists of relevant studies and reviews.
The paper provides an introductory, but complete, overview of the application of NLP techniques for studying language disruption due to dementia. We also suggest that this technique can be fruitfully applied to other medical conditions (e.g., cognitive dysfunctions associated with dysarthria, cerebrovascular disease and mood disorders).
CONCLUSIONS & IMPLICATIONS: Despite several critical points need to be addressed by the scientific community, a growing body of empirical evidence shows that NLP techniques can represent a promising tool for studying language changes in pathological aging, with a high potential to lead a significant shift in clinical practice.
What is already known on this subject Speech and languages abilities change due to non-pathological neurocognitive ageing and neurodegenerative processes. These subtle verbal modifications can be measured through NLP techniques and used as biomarkers for screening/diagnostic purposes in the geriatric population (i.e., digital linguistic biomarkers-DLBs). What this paper adds to existing knowledge The review shows that DLBs can represent a promising clinical tool, with a high potential to spark a major shift to dementia assessment in the elderly. Some challenges and open problems are also discussed. What are the potential or actual clinical implications of this work? This methodological review represents a starting point for clinicians approaching the DLB research field for studying language in healthy and pathological ageing. It summarizes the state of the art and future research directions of this novel approach.
在过去的几年中,人们对将言语产生物用作数字生物标志物越来越感兴趣,即可以通过数字设备收集和测量的客观、可量化的行为数据,从而可以低成本地进行病理学检测、分类和监测。已经发表了许多关于自动检测细微言语改变的研究论文,这些研究论文的起点是书面文本、原始语音记录和抄本,并且这种语言分析已被单独作为诊断痴呆症和老年患者常见其他疾病(例如,与代谢紊乱相关的认知功能障碍、构音障碍)的一种具有成本效益的方法。
对自然语言处理(NLP)技术在老年人群体中的临床应用的证据进行批判性评估和综合。特别是,我们讨论了在健康和病理性衰老中研究语言的最新进展,重点介绍了最新的研究成果,以构建基于语言的非侵入性工具,用于早期识别由于痴呆导致的认知脆弱。我们还讨论了这种方法提出的一些挑战和未解决的问题。
我们进行了范围界定审查,以检查有关这一新兴领域的新出现证据。从 MEDLINE、Cochrane 和 Web of Science 的数据库中确定了截至 2021 年 11 月发表的潜在相关研究。我们还浏览了 2017 年至 2021 年期间领先的国际会议(例如 ACL、COLING、Interspeech、LREC)的会议记录,并检查了相关研究和评论的参考文献列表。
本文提供了 NLP 技术在研究痴呆引起的语言障碍方面的应用的介绍性但完整的概述。我们还认为,该技术可以成功应用于其他医学病症(例如,与构音障碍、脑血管病和情绪障碍相关的认知功能障碍)。
尽管科学界需要解决几个关键问题,但越来越多的经验证据表明,NLP 技术可以成为研究病理性衰老中语言变化的有前途的工具,具有在临床实践中带来重大转变的巨大潜力。
关于这个主题已经知道了什么:言语和语言能力会因非病理性神经认知衰老和神经退行性过程而改变。这些细微的言语变化可以通过 NLP 技术进行测量,并用作老年人群体的筛查/诊断目的的生物标志物(即数字语言生物标志物-DLB)。本文对现有知识有何补充:综述表明,DLB 可以成为一种很有前途的临床工具,具有在老年人中评估痴呆症方面带来重大转变的巨大潜力。还讨论了一些挑战和未解决的问题。这项工作有哪些潜在或实际的临床意义?本方法学综述为临床医生研究健康和病理性衰老中的语言提供了一个起点,它总结了这种新方法的最新进展和未来研究方向。