Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, University of Colorado Denver, Denver, Colorado, United States.
Department of Medicine, University of Colorado Denver, Denver, Colorado, United States.
Am J Physiol Heart Circ Physiol. 2023 Jun 1;324(6):H804-H820. doi: 10.1152/ajpheart.00614.2022. Epub 2023 Mar 24.
Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, = 29) or ambient normoxia (1,525 m/5,000 ft, = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with ) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, ) extracellular matrix (ECM) remodeling, ) inflammatory cell activation, and ) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH. Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.
右心室(RV)衰竭是肺动脉高压(PH)的主要决定因素。暴露于 2 周缺氧的小牛会发展出严重的 PH,与啮齿动物不同,该物种的缺氧诱导的 PH 可导致右心衰竭。因此,我们试图研究缺氧诱导的 PH 中小牛 RV 的分子和结构变化,假设我们可以确定在面对严重 PH 发展时,导致代偿性生理功能的机制。小牛暴露于 14 天的环境缺氧(相当于 4570 米/15000 英尺海拔,n = 29)或环境常氧(1525 米/5000 英尺,n = 25)。通过右心导管插入术和压力-容积环评估心肺功能。通过 cDNA 微阵列、RealTime PCR、蛋白质组学和免疫化学分析 RV 重塑的分子和细胞决定因素。缺氧暴露诱导了强烈的 PH,RV 收缩性能增加,心输出量保持不变,但存在 RV-肺动脉机械偶联失调的证据,如在晚期疾病中所见。基因表达分析显示与结构重塑、细胞信号转导和存活相关的细胞过程。我们进一步确定了与)肥厚基因表达和通过 YAP-TAZ 信号的促生存机械转导相关的特定基因表达簇,)细胞外基质(ECM)重塑,)炎症细胞激活,和)血管生成。在 RV 重塑中检测到心脏成纤维细胞的潜在转录组学特征,其功能与细胞运动、组织分化和血管生成有关。蛋白质组学和免疫组织化学分析证实 RV 心肌细胞肥大,以及 ECM 重塑、炎症细胞激活和内皮细胞增殖在 RV 间质内的定位。总之,缺氧和血液动力学负荷引发保护性和代偿性 RV 重塑的协调过程,以抵御 PH 的进展。使用大型动物模型并采用整合血液动力学、转录组学、蛋白质组学和免疫组织化学分析的综合方法,我们研究了严重 PH 对 RV 的早期(2 周)影响。我们观察到,PH 进展过程中的 RV 重塑代表了转录驱动过程的连续体,其中心肌细胞、成纤维细胞、内皮细胞和促重塑巨噬细胞协同作用,在慢性、严重和进行性压力超负荷期间维持生理稳态并保护心肌细胞存活。