一个基于个性化虚拟形象的网络应用程序,以帮助人们理解社交距离如何减少新冠病毒的传播:横断面观察性前后研究。
A Personalized Avatar-Based Web Application to Help People Understand How Social Distancing Can Reduce the Spread of COVID-19: Cross-sectional, Observational, Pre-Post Study.
作者信息
Etienne Doriane, Archambault Patrick, Aziaka Donovan, Chipenda-Dansokho Selma, Dubé Eve, Fallon Catherine S, Hakim Hina, Kindrachuk Jason, Krecoum Dan, MacDonald Shannon E, Ndjaboue Ruth, Noubi Magniol, Paquette Jean-Sébastien, Parent Elizabeth, Witteman Holly O
机构信息
VITAM - Centre de recherche en santé durable, Université Laval, Québec, QC, Canada.
Department of Emergency Medicine, Centre intégré de santé et de services sociaux de Chaudière-Appalaches, Québec, QC, Canada.
出版信息
JMIR Form Res. 2023 Apr 25;7:e38430. doi: 10.2196/38430.
BACKGROUND
To reduce the transmission of SARS-CoV-2 and the associated spread of COVID-19, many jurisdictions around the world imposed mandatory or recommended social or physical distancing. As a result, at the beginning of the pandemic, various communication materials appeared online to promote distancing. Explanations of the science underlying these mandates or recommendations were either highly technical or highly simplified.
OBJECTIVE
This study aimed to understand the effects of a dynamic visualization on distancing. Our overall aim was to help people understand the dynamics of the spread of COVID-19 in their community and the implications of their own behavior for themselves, those around them, the health care system, and society.
METHODS
Using Scrum, which is an agile framework; JavaScript (Vue.js framework); and code already developed for risk communication in another context of infectious disease transmission, we rapidly developed a new personalized web application. In our application, people make avatars that represent themselves and the people around them. These avatars are integrated into a 3-minute animation illustrating an epidemiological model for COVID-19 transmission, showing the differences in transmission with and without distancing. During the animation, the narration explains the science of how distancing reduces the transmission of COVID-19 in plain language in English or French. The application offers full captions to complement the narration and a descriptive transcript for people using screen readers. We used Google Analytics to collect standard usage statistics. A brief, anonymous, optional survey also collected self-reported distancing behaviors and intentions in the previous and coming weeks, respectively. We launched and disseminated the application on Twitter and Facebook on April 8, 2020, and April 9, 2020.
RESULTS
After 26 days, the application received 3588 unique hits from 82 countries. The optional survey at the end of the application collected 182 responses. Among this small subsample of users, survey respondents were nearly (170/177, 96%) already practicing distancing and indicated that they intended to practice distancing in the coming week (172/177, 97.2%). Among the small minority of people (n=7) who indicated that they had not been previously practicing distancing, 2 (29%) reported that they would practice distancing in the week to come.
CONCLUSIONS
We developed a web application to help people understand the relationship between individual-level behavior and population-level effects in the context of an infectious disease spread. This study also demonstrates how agile development can be used to quickly create personalized risk messages for public health issues like a pandemic. The nonrandomized design of this rapid study prevents us from concluding the application's effectiveness; however, results thus far suggest that avatar-based visualizations may help people understand their role in infectious disease transmission.
背景
为减少严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的传播及新型冠状病毒肺炎(COVID-19)的相关扩散,世界上许多司法管辖区实施了强制性或建议性的社交或物理距离措施。因此,在疫情初期,各种宣传材料出现在网上以推广保持距离。对这些措施或建议背后科学原理的解释要么技术性很强,要么过于简化。
目的
本研究旨在了解动态可视化对保持距离的影响。我们的总体目标是帮助人们了解COVID-19在其社区中的传播动态,以及他们自身行为对自己、周围的人、医疗系统和社会的影响。
方法
我们使用敏捷框架Scrum、JavaScript(Vue.js框架)以及在另一种传染病传播背景下已开发用于风险沟通的代码,快速开发了一个新的个性化网络应用程序。在我们的应用程序中,人们创建代表自己和周围人的虚拟形象。这些虚拟形象被整合到一个3分钟的动画中,该动画展示了COVID-19传播的流行病学模型,显示了保持距离和不保持距离情况下传播的差异。在动画过程中,旁白用英语或法语以通俗易懂的语言解释保持距离如何减少COVID-19传播的科学原理。该应用程序提供完整的字幕以补充旁白,并为使用屏幕阅读器的人提供描述性文字记录。我们使用谷歌分析来收集标准使用统计数据。一项简短、匿名、可选的调查还分别收集了自我报告的前一周和未来一周的保持距离行为及意图。我们于2020年4月8日和2020年4月9日在推特和脸书上发布并传播了该应用程序。
结果
26天后,该应用程序收到来自82个国家的3588次独立访问。应用程序末尾的可选调查收集到182份回复。在这个小样本用户中,调查受访者几乎都(170/177,96%)已经在保持距离,并表示他们打算在接下来的一周保持距离(172/177,97.2%)。在少数表示之前没有保持距离的人(n = 7)中,有2人(29%)报告说他们将在接下来的一周保持距离。
结论
我们开发了一个网络应用程序,以帮助人们了解在传染病传播背景下个人层面行为与群体层面影响之间的关系。本研究还展示了如何利用敏捷开发快速为大流行等公共卫生问题创建个性化风险信息。这项快速研究的非随机设计使我们无法得出该应用程序的有效性结论;然而,目前的结果表明基于虚拟形象的可视化可能有助于人们理解他们在传染病传播中的作用。