Suppr超能文献

快速评估病毒新出现风险(FEVER):一种用于对新出现病毒病原体进行生物监测、诊断和突变分型的计算工具。

Fast Evaluation of Viral Emerging Risks (FEVER): A computational tool for biosurveillance, diagnostics, and mutation typing of emerging viral pathogens.

作者信息

Stromberg Zachary R, Theiler James, Foley Brian T, Myers Y Gutiérrez Adán, Hollander Attelia, Courtney Samantha J, Gans Jason, Deshpande Alina, Martinez-Finley Ebany J, Mitchell Jason, Mukundan Harshini, Yusim Karina, Kubicek-Sutherland Jessica Z

机构信息

Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.

Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.

出版信息

PLOS Glob Public Health. 2022 Feb 24;2(2):e0000207. doi: 10.1371/journal.pgph.0000207. eCollection 2022.

Abstract

Viral pathogens can rapidly evolve, adapt to novel hosts, and evade human immunity. The early detection of emerging viral pathogens through biosurveillance coupled with rapid and accurate diagnostics are required to mitigate global pandemics. However, RNA viruses can mutate rapidly, hampering biosurveillance and diagnostic efforts. Here, we present a novel computational approach called FEVER (Fast Evaluation of Viral Emerging Risks) to design assays that simultaneously accomplish: 1) broad-coverage biosurveillance of an entire group of viruses, 2) accurate diagnosis of an outbreak strain, and 3) mutation typing to detect variants of public health importance. We demonstrate the application of FEVER to generate assays to simultaneously 1) detect sarbecoviruses for biosurveillance; 2) diagnose infections specifically caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); and 3) perform rapid mutation typing of the D614G SARS-CoV-2 spike variant associated with increased pathogen transmissibility. These FEVER assays had a high in silico recall (predicted positive) up to 99.7% of 525,708 SARS-CoV-2 sequences analyzed and displayed sensitivities and specificities as high as 92.4% and 100% respectively when validated in 100 clinical samples. The D614G SARS-CoV-2 spike mutation PCR test was able to identify the single nucleotide identity at position 23,403 in the viral genome of 96.6% SARS-CoV-2 positive samples without the need for sequencing. This study demonstrates the utility of FEVER to design assays for biosurveillance, diagnostics, and mutation typing to rapidly detect, track, and mitigate future outbreaks and pandemics caused by emerging viruses.

摘要

病毒病原体能够迅速进化,适应新宿主,并逃避免疫。需要通过生物监测以及快速准确的诊断来早期发现新出现的病毒病原体,以减轻全球大流行的影响。然而,RNA病毒能够快速变异,这阻碍了生物监测和诊断工作。在此,我们提出一种名为FEVER(病毒新出现风险快速评估)的新型计算方法,用于设计能同时实现以下目标的检测方法:1)对整个病毒组进行广泛覆盖的生物监测;2)准确诊断暴发毒株;3)进行突变分型以检测具有公共卫生重要性的变异株。我们展示了FEVER在生成检测方法方面的应用,这些检测方法能同时:1)检测用于生物监测的沙贝病毒;2)诊断由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)特异性引起的感染;3)对与病原体传播性增加相关的D614G SARS-CoV-2刺突变异株进行快速突变分型。在分析的525,708个SARS-CoV-2序列中,这些FEVER检测方法在计算机模拟中的召回率(预测阳性)高达99.7%,在100份临床样本中验证时,灵敏度和特异性分别高达92.4%和100%。D614G SARS-CoV-2刺突突变PCR检测能够在96.6%的SARS-CoV-2阳性样本的病毒基因组中识别第23403位的单核苷酸身份,而无需进行测序。这项研究证明了FEVER在设计用于生物监测、诊断和突变分型的检测方法方面的实用性,以快速检测、追踪和减轻未来由新出现病毒引起的疫情和大流行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30ec/10021650/c49becf84ab8/pgph.0000207.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验