Sun Xihao, Cui Zekai, Liang Yuqin, Duan Chunwen, Chan Hon Fai, Mao Shengru, Gu Jianing, Ding Chengcheng, Yang Xu, Wang Qing, Tang Shibo, Chen Jiansu
Aier School of Ophthalmology, Central South University, Changsha, Hunan 410015, People's Republic of China.
Aier Eye Institute, Changsha, Hunan 410015, People's Republic of China.
Biofabrication. 2023 Apr 11;15(3). doi: 10.1088/1758-5090/acc761.
The three-dimensional (3D) retinal organoids (ROs) derived from human induced pluripotent stem cells (hiPSCs), mimicking the growth and development of the human retina, is a promising model for investigating inherited retinal diseases. However, the efficient generation of homogenous ROs remains a challenge. Here we introduce a novel polydimethylsiloxane (PDMS) microwell platform containing 62 V-bottom micro-cavities for the ROs differentiation from hiPSCs. The uniform adherent 3D ROs could spontaneously form using neural retina (NR) induction. Our results showed that the complex of NR (expressing VSX2), ciliary margin (CM) (expressing RDH10), and retinal pigment epithelium (RPE) (expressing ZO-1, MITF, and RPE65) developed in the PDMS microwell after the differentiation. It is important to note that ROs in PDMS microwell platforms not only enable one-stop assembly but also maintain homogeneity and mature differentiation over a period of more than 25 weeks without the use of BMP4 and Matrigel. Retinal ganglion cells (expressing BRN3a), amacrine cells (expressing AP2a), horizontal cells (expressing PROX1 and AP2), photoreceptor cells for cone (expressing S-opsin and L/M-opsin) and rod (expressing Rod opsin), bipolar cells (expressing VSX2 and PKC), and Müller glial cells (expressing GS and Sox9) gradually emerged. Furthermore, we replaced fetal bovine serum with human platelet lysate and established a xeno-free culture workflow that facilitates clinical application. Thus, our PDMS microwell platform for one-stop assembly and long-term culture of ROs using a xeno-free workflow is favorable for retinal disease modeling, drug screening, and manufacturing ROs for clinical translation.
源自人类诱导多能干细胞(hiPSC)的三维(3D)视网膜类器官(RO),模拟人类视网膜的生长和发育,是研究遗传性视网膜疾病的一个有前景的模型。然而,高效生成同质的RO仍然是一个挑战。在此,我们引入了一种新型的聚二甲基硅氧烷(PDMS)微孔平台,其包含62个用于从hiPSC分化生成RO的V型底微腔。使用神经视网膜(NR)诱导可自发形成均匀附着的3D RO。我们的结果表明,分化后,在PDMS微孔中形成了由表达VSX2的NR、表达RDH10的睫状缘(CM)和表达ZO-1、MITF和RPE65的视网膜色素上皮(RPE)组成的复合体。需要注意的是,PDMS微孔平台中的RO不仅能够一站式组装,而且在不使用BMP4和基质胶的情况下,在超过25周的时间内保持同质性和成熟分化。逐渐出现了表达BRN3a的视网膜神经节细胞、表达AP2a的无长突细胞、表达PROX1和AP2的水平细胞、表达S-视蛋白和L/M-视蛋白的视锥光感受器细胞、表达视杆视蛋白的视杆光感受器细胞、表达VSX2和PKC的双极细胞以及表达GS和Sox9的米勒胶质细胞。此外,我们用人血小板裂解物替代胎牛血清,并建立了有利于临床应用的无动物源培养流程。因此,我们用于RO一站式组装和长期培养的无动物源流程的PDMS微孔平台有利于视网膜疾病建模、药物筛选以及生产用于临床转化的RO。