Leverant Adam, Oprysk Larissa, Dabrowski Alexandra, Kyker-Snowman Kelly, Vazquez Maribel
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
Micromachines (Basel). 2024 Aug 30;15(9):1103. doi: 10.3390/mi15091103.
Rapid prototyping has produced accessible manufacturing methods that offer faster and more cost-effective ways to develop microscale systems for cellular testing. Commercial 3D printers are now increasingly adapted for soft lithography, where elastomers are used in tandem with 3D-printed substrates to produce in vitro cell assays. Newfound abilities to prototype cellular systems have begun to expand fundamental bioengineering research in the visual system to complement tissue engineering studies reliant upon complex microtechnology. This project used 3D printing to develop elastomeric devices that examined the responses of retinal cells to flow. Our experiments fabricated molds for elastomers using metal milling, resin stereolithography, and fused deposition modeling via plastic 3D printing. The systems were connected to flow pumps to simulate different flow conditions and examined phenotypic responses of endothelial and neural cells significant to neurovascular barriers of the retina. The results indicated that microdevices produced using 3D-printed methods demonstrated differences in cell survival and morphology in response to external flow that are significant to barrier tissue function. Modern 3D printing technology shows great potential for the rapid production and testing of retinal cell responses that will contribute to both our understanding of fundamental cell response and the development of new therapies. Future studies will incorporate varied flow stimuli as well as different extracellular matrices and expanded subsets of retinal cells.
快速成型技术已产生了一些易于使用的制造方法,这些方法提供了更快且更具成本效益的方式来开发用于细胞测试的微尺度系统。商业3D打印机现在越来越多地适用于软光刻技术,即在3D打印的基底上配合使用弹性体来进行体外细胞分析。细胞系统原型制作方面新获得的能力已开始扩展视觉系统中的基础生物工程研究,以补充依赖复杂微技术的组织工程研究。该项目利用3D打印技术开发了弹性体装置,用于检测视网膜细胞对流动的反应。我们的实验通过金属铣削、树脂立体光刻以及使用塑料3D打印的熔融沉积建模来制造弹性体模具。这些系统连接到流动泵以模拟不同的流动条件,并检测对视网膜神经血管屏障至关重要的内皮细胞和神经细胞的表型反应。结果表明,使用3D打印方法制造的微型装置在细胞存活和形态方面表现出因外部流动而产生的差异,这些差异对屏障组织功能具有重要意义。现代3D打印技术在快速生产和测试视网膜细胞反应方面显示出巨大潜力,这将有助于我们对基本细胞反应的理解以及新疗法的开发。未来的研究将纳入各种流动刺激以及不同的细胞外基质和更广泛的视网膜细胞亚群。