Suppr超能文献

将多模态信息整合到机器学习中用于急性心肌梗死的分类。

Integrating multimodal information in machine learning for classifying acute myocardial infarction.

机构信息

School of Nursing, Emory University, United States of America.

Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, United States of America.

出版信息

Physiol Meas. 2023 Apr 18;44(4):044002. doi: 10.1088/1361-6579/acc77f.

Abstract

. Prompt identification and recognization of myocardial ischemia/infarction (MI) is the most important goal in the management of acute coronary syndrome. The 12-lead electrocardiogram (ECG) is widely used as the initial screening tool for patients with chest pain but its diagnostic accuracy remains limited. There is early evidence that machine learning (ML) algorithms applied to ECG waveforms can improve performance. Most studies are designed to classify MI from healthy controls and thus are limited due to the lack of consideration of ECG abnormalities from other cardiac conditions, leading to false positives. Moreover, clinical information beyond ECG has not yet been well leveraged in existing ML models.The present study considered downstream clinical implementation scenarios in the initial model design by dichotomizing study recordings from a public large-scale ECG dataset into a MI class and a non-MI class with the inclusion of MI-confounding conditions. Two experiments were conducted to systematically investigate the impact of two important factors entrained in the modeling process, including the duration of ECG, and the value of multimodal information for model training. A novel multimodal deep learning architecture was proposed to learn joint features from both ECG and patient demographics.The multimodal model achieved better performance than the ECG-only model, with a mean area under the receiver operating characteristic curve of 92.1% and a mean accuracy of 87.4%, which is on par with existing studies despite the increased task difficulty due to the new class definition. By investigation of model explainability, it revealed the contribution of patient information in model performance and clinical concordance of the model's attention with existing clinical insights.The findings in this study help guide the development of ML solutions for prompt MI detection and move the models one step closer to real-world clinical applications.

摘要

. 及时识别和诊断心肌缺血/梗死(MI)是急性冠状动脉综合征管理的最重要目标。12 导联心电图(ECG)广泛用作胸痛患者的初始筛查工具,但诊断准确性仍然有限。有早期证据表明,应用于心电图波形的机器学习(ML)算法可以提高性能。大多数研究旨在从健康对照中分类 MI,因此由于缺乏对其他心脏疾病引起的 ECG 异常的考虑,导致假阳性,因此受到限制。此外,现有 ML 模型尚未充分利用超出 ECG 的临床信息。本研究在初始模型设计中考虑了下游临床实施场景,通过将公共大规模 ECG 数据集的研究记录分为 MI 类和非 MI 类,同时纳入 MI 混杂条件,将其分为 MI 类和非 MI 类。进行了两项实验来系统地研究建模过程中两个重要因素的影响,包括 ECG 的持续时间和模型训练的多模态信息的值。提出了一种新的多模态深度学习架构,用于从 ECG 和患者人口统计学数据中学习联合特征。多模态模型的表现优于仅 ECG 模型,其接收者操作特征曲线下的平均面积为 92.1%,平均准确率为 87.4%,尽管由于新的类别定义增加了任务难度,但与现有研究相当。通过对模型可解释性的研究,揭示了患者信息对模型性能的贡献以及模型注意力与现有临床见解的临床一致性。本研究的结果有助于指导用于及时 MI 检测的 ML 解决方案的开发,并使模型更接近现实世界的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a605/10111877/60fc95308bad/pmeaacc77ff1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验