Suppr超能文献

Gas7 是一种新型的树突棘起始因子。

Gas7 Is a Novel Dendritic Spine Initiation Factor.

机构信息

Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland.

HiLIFE-Neuroscience Center, University of Helsinki, Helsinki 00290, Finland.

出版信息

eNeuro. 2023 Apr 14;10(4). doi: 10.1523/ENEURO.0344-22.2023. Print 2023 Apr.

Abstract

Brain stores new information by modifying connections between neurons. When new information is learnt, a group of neurons gets activated and they are connected to each other via synapses. Dendritic spines are protrusions along neuronal dendrites where excitatory synapses are located. Dendritic spines are the first structures to protrude out from the dendrite to reach out to other neurons and establish a new connection. Thus, it is expected that neuronal activity enhances spine initiation. However, the molecular mechanisms linking neuronal activity to spine initiation are poorly known. Membrane binding BAR domain proteins are involved in spine initiation, but it is not known whether neuronal activity affects BAR domain proteins. Here, we used bicuculline treatment to activate excitatory neurons in organotypic hippocampal slices. With this experimental setup, we identified F-BAR domain containing growth arrest-specific protein (Gas7) as a novel spine initiation factor responding to neuron activity. Upon bicuculline addition, Gas7 clustered to create spine initiation hotspots, thus increasing the probability to form new spines in activated neurons. Gas7 clustering and localization was dependent on PI3-kinase (PI3K) activity and intact F-BAR domain. Gas7 overexpression enhanced N-WASP localization to clusters as well as it increased the clustering of actin. Arp2/3 complex was required for normal Gas7-induced actin clustering. Gas7 overexpression increased and knock-down decreased spine density in hippocampal pyramidal neurons. Taken together, we suggest that Gas7 creates platforms under the dendritic plasma membrane which facilitate spine initiation. These platforms grow on neuronal activation, increasing the probability of making new spines and new connections between active neurons. As such, we identified a novel molecular mechanism to link neuronal activity to the formation of new connections between neurons.

摘要

大脑通过改变神经元之间的连接来存储新信息。当新信息被学习时,一组神经元被激活,它们通过突触相互连接。树突棘是神经元树突上的突起,兴奋性突触位于此处。树突棘是从树突中首先突出的结构,用于与其他神经元接触并建立新的连接。因此,可以预期神经元活动会增强棘突的起始。然而,将神经元活动与棘突起始联系起来的分子机制知之甚少。膜结合 BAR 结构域蛋白参与棘突起始,但尚不清楚神经元活动是否会影响 BAR 结构域蛋白。在这里,我们使用 Bicuculline 处理来激活器官型海马切片中的兴奋性神经元。通过这种实验设置,我们确定 F-BAR 结构域包含的生长停滞特异性蛋白(Gas7)作为一种新的响应神经元活动的棘突起始因子。在 Bicuculline 加入后,Gas7 聚集形成棘突起始热点,从而增加激活神经元中形成新棘突的概率。Gas7 的聚集和定位依赖于 PI3-激酶(PI3K)活性和完整的 F-BAR 结构域。Gas7 的过表达增强了 N-WASP 向聚集物的定位,同时增加了肌动蛋白的聚集。Arp2/3 复合物是 Gas7 诱导的正常肌动蛋白聚集所必需的。Gas7 的过表达增加,敲低则减少海马锥体神经元中的棘突密度。总之,我们认为 Gas7 在树突质膜下创建平台,从而促进棘突起始。这些平台在神经元激活时生长,增加了形成新棘突和活跃神经元之间新连接的可能性。因此,我们确定了一种将神经元活动与神经元之间新连接形成联系的新分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d935/10114493/09370a492e30/ENEURO.0344-22.2023_f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验