Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.
College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, China.
Adv Sci (Weinh). 2023 May;10(14):e2300073. doi: 10.1002/advs.202300073. Epub 2023 Mar 25.
Constructing stable heterostructures with appropriate active site architectures in covalent organic frameworks (COFs) can improve the active site accessibility and facilitate charge transfer, thereby increasing the catalytic efficiency. Herein, a pore-wall modification strategy is proposed to achieve regularly arranged TiO nanodots (≈1.82 nm) in the pores of COFs via site-specific nucleation. The site-specific nucleation strategy stabilizes the TiO nanodots as well as enables the controlled growth of TiO throughout the COFs' matrix. In a typical process, the pore wall is modified and site-specific nucleation is induced between the metal precursors and the organic walls of the COFs through a careful ligand selection, and the strongly bonded metal precursors drive the confined growth of ultrasmall TiO nanodots during the subsequent hydrolysis. This will result in remarkably improved surface reactions, owing to the superior catalytic activity of TiO nanodots functionalized to COFs through strong NTiO bonds. Furthermore, density functional theory studies reveal that pore-wall modification is beneficial for inducing strong interactions between the COF and TiO and results in a large energy transfer via the NTiO bonds. This work highlights the feasibility of developing stable COF and metal oxide based heterostructures via organic wall modifications to produce carbon fuels by artificial photosynthesis.
在共价有机框架(COFs)中构建具有适当活性位结构的稳定杂化结构可以提高活性位的可及性并促进电荷转移,从而提高催化效率。在此,提出了一种孔壁修饰策略,通过特异性成核在 COFs 的孔中实现规则排列的 TiO 纳米点(≈1.82nm)。特异性成核策略稳定了 TiO 纳米点,并能够控制 TiO 在 COFs 基质中的生长。在典型过程中,通过仔细选择配体,对孔壁进行修饰并在金属前体和 COFs 的有机壁之间诱导特异性成核,而强键合的金属前体在随后的水解过程中驱动超小 TiO 纳米点的受限生长。由于通过强 NTiO 键将 TiO 纳米点功能化到 COFs 上会带来优异的催化活性,因此表面反应会得到显著改善。此外,密度泛函理论研究表明,孔壁修饰有利于诱导 COF 和 TiO 之间的强相互作用,并通过 NTiO 键实现大的能量转移。这项工作突出了通过有机壁修饰开发稳定的 COF 和金属氧化物基杂化结构以通过人工光合作用生产碳燃料的可行性。