University of Washington Dept. of Materials Science and Engineering, USA.
University of Washington Dept. of Materials Science and Engineering, USA.
Biosens Bioelectron. 2023 Jun 1;229:115237. doi: 10.1016/j.bios.2023.115237. Epub 2023 Mar 20.
Exhaled human breath contains a rich mixture of volatile organic compounds (VOCs) whose concentration can vary in response to disease or other stressors. Using simulated odorant-binding proteins (OBPs) and machine learning methods, we designed a multiplex of short VOC- and carbon-binding peptide probes that detect a characteristic "VOC fingerprint". Specifically, we target VOCs associated with COVID-19 in a compact, molecular sensor array that directly transduces vapor composition into multi-channel electrical signals. Rapidly synthesizable, chimeric VOC- and solid-binding peptides were derived from selected OBPs using multi-sequence alignment with protein database structures. Selective peptide binding to targeted VOCs and sensor surfaces was validated using surface plasmon resonance spectroscopy and quartz crystal microbalance. VOC sensing was demonstrated by peptide-sensitized, exposed-channel carbon nanotube transistors. The data-to-device pipeline enables the development of novel devices for non-invasive monitoring, diagnostics of diseases, and environmental exposure assessment.
呼出的人体呼吸中含有丰富的挥发性有机化合物 (VOC),其浓度可以响应疾病或其他应激源而变化。使用模拟气味结合蛋白 (OBP) 和机器学习方法,我们设计了一个短 VOC 和碳结合肽探针的多路复用器,该探针可检测到特征“VOC 指纹”。具体来说,我们在一个紧凑的分子传感器阵列中针对与 COVID-19 相关的 VOC,该阵列直接将蒸汽成分转换为多通道电信号。使用与蛋白质数据库结构的多序列比对,从选定的 OBP 中快速合成了杂合 VOC 和固相结合肽。使用表面等离子体共振光谱法和石英晶体微天平验证了对靶向 VOC 和传感器表面的选择性肽结合。通过肽敏化、暴露通道的碳纳米管晶体管实现了 VOC 感测。数据到设备的管道使新型非侵入性监测、疾病诊断和环境暴露评估设备的开发成为可能。