Suppr超能文献

利用机器学习预测突变功能。

Predicting mutational function using machine learning.

机构信息

Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.

Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Mutat Res Rev Mutat Res. 2023 Jan-Jun;791:108457. doi: 10.1016/j.mrrev.2023.108457. Epub 2023 Mar 23.

Abstract

Genetic variations are one of the major causes of phenotypic variations between human individuals. Although beneficial as being the substrate of evolution, germline mutations may cause diseases, including Mendelian diseases and complex diseases such as diabetes and heart diseases. Mutations occurring in somatic cells are a main cause of cancer and likely cause age-related phenotypes and other age-related diseases. Because of the high abundance of genetic variations in the human genome, i.e., millions of germline variations per human subject and thousands of additional somatic mutations per cell, it is technically challenging to experimentally verify the function of every possible mutation and their interactions. Significant progress has been made to solve this problem using computational approaches, especially machine learning (ML). Here, we review the progress and achievements made in recent years in this field of research. We classify the computational models in two ways: one according to their prediction goals including protein structural alterations, gene expression changes, and disease risks, and the other according to their methodologies, including non-machine learning methods, classical machine learning methods, and deep neural network methods. For models in each category, we discuss their architecture, prediction accuracy, and potential limitations. This review provides new insights into the applications and future directions of computational approaches in understanding the role of mutations in aging and disease.

摘要

遗传变异是人类个体之间表型变异的主要原因之一。虽然作为进化的基础是有益的,但种系突变可能导致疾病,包括孟德尔疾病和糖尿病、心脏病等复杂疾病。体细胞中的突变是癌症的主要原因,并可能导致与年龄相关的表型和其他与年龄相关的疾病。由于人类基因组中遗传变异的高度丰富性,即每个人类个体有上百万种种系变异和每个细胞有数千种额外的体细胞突变,因此实验验证每个可能的突变及其相互作用的功能具有技术挑战性。利用计算方法,特别是机器学习 (ML),在解决这个问题方面取得了重大进展。在这里,我们回顾了近年来在这一研究领域取得的进展和成就。我们根据预测目标将计算模型分为两类:一类是根据其预测目标进行分类,包括蛋白质结构改变、基因表达变化和疾病风险,另一类是根据其方法学进行分类,包括非机器学习方法、经典机器学习方法和深度神经网络方法。对于每个类别的模型,我们讨论了它们的架构、预测准确性和潜在的局限性。本综述为理解突变在衰老和疾病中的作用提供了计算方法应用和未来方向的新见解。

相似文献

1
Predicting mutational function using machine learning.利用机器学习预测突变功能。
Mutat Res Rev Mutat Res. 2023 Jan-Jun;791:108457. doi: 10.1016/j.mrrev.2023.108457. Epub 2023 Mar 23.
3
Predicting cancer-associated germline variations in proteins.预测蛋白质中的与癌症相关的种系变异。
BMC Genomics. 2012 Jun 18;13 Suppl 4(Suppl 4):S8. doi: 10.1186/1471-2164-13-S4-S8.

本文引用的文献

1
Classification of non-coding variants with high pathogenic impact.高致病性非编码变异分类。
PLoS Genet. 2022 Apr 29;18(4):e1010191. doi: 10.1371/journal.pgen.1010191. eCollection 2022 Apr.
3
Researchers turn to deep learning to decode protein structures.研究人员借助深度学习来解析蛋白质结构。
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2202107119. doi: 10.1073/pnas.2202107119. Epub 2022 Mar 2.
6
A wider field of view to predict expression.更广阔的视野预测表达。
Nat Methods. 2021 Oct;18(10):1155-1156. doi: 10.1038/s41592-021-01259-4.
7
Decoding disease: from genomes to networks to phenotypes.解码疾病:从基因组到网络再到表型。
Nat Rev Genet. 2021 Dec;22(12):774-790. doi: 10.1038/s41576-021-00389-x. Epub 2021 Aug 2.
8
Assessment of the CASP14 assembly predictions.CASP14 组装预测评估。
Proteins. 2021 Dec;89(12):1787-1799. doi: 10.1002/prot.26199. Epub 2021 Aug 31.
9
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
10
Machine learning in protein structure prediction.机器学习在蛋白质结构预测中的应用。
Curr Opin Chem Biol. 2021 Dec;65:1-8. doi: 10.1016/j.cbpa.2021.04.005. Epub 2021 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验