Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
Cells Tissues Organs. 2023;212(5):383-398. doi: 10.1159/000528965. Epub 2023 Mar 24.
Varying degrees of hydroxyapatite (HA) surface functionalization have been implicated as the primary driver of differential osteogenesis observed in infiltrating cells. The ability to reliably create spatially controlled areas of mineralization in composite engineered tissues is of growing interest in the field, and the use of HA-functionalized biomaterials may provide a robust solution to this challenge. In this study, we successfully fabricated polycaprolactone salt-leached scaffolds with two levels of a biomimetic calcium phosphate coating to examine their effects on MSC osteogenesis. Longer duration coating in simulated body fluid (SBF) led to increased HA crystal nucleation within scaffold interiors as well as more robust HA crystal formation on scaffold surfaces. Ultimately, the increased surface stiffness of scaffolds coated in SBF for 7 days in comparison to scaffolds coated in SBF for 1 day led to more robust osteogenesis of MSCs in vitro without the assistance of osteogenic signaling molecules. This study also demonstrated that the use of SBF-based HA coatings can promote higher levels of osteogenesis in vivo. Finally, when incorporated as the endplate region of a larger tissue-engineered intervertebral disc replacement, HA coating did not induce mineralization in or promote cell migration out of neighboring biomaterials. Overall, these results verified tunable biomimetic HA coatings as a promising biomaterial modification to promote discrete regions of mineralization within composite engineered tissues.
不同程度的羟基磷灰石(HA)表面功能化被认为是浸润细胞中观察到的不同成骨作用的主要驱动因素。在该领域中,能够可靠地在复合工程组织中创建具有空间控制的矿化区域的能力越来越受到关注,并且使用经过 HA 功能化的生物材料可能是解决这一挑战的有效方法。在这项研究中,我们成功地制造了具有两种仿生磷酸钙涂层水平的聚己内酯盐浸出支架,以研究它们对 MSC 成骨作用的影响。在模拟体液(SBF)中进行更长时间的涂层处理,导致支架内部 HA 晶体成核增加,以及支架表面 HA 晶体形成更加稳健。最终,与在 SBF 中涂层 1 天的支架相比,在 SBF 中涂层 7 天的支架的表面硬度增加,导致 MSC 在体外的成骨作用更加稳健,而无需成骨信号分子的辅助。本研究还表明,使用基于 SBF 的 HA 涂层可以促进体内更高水平的成骨作用。最后,当作为更大的组织工程椎间盘置换的终板区域时,HA 涂层不会在相邻生物材料中诱导矿化或促进细胞迁移。总的来说,这些结果证实了可调节的仿生 HA 涂层是一种有前途的生物材料改性方法,可以促进复合工程组织中离散区域的矿化。