文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米羟基磷灰石涂层通过 BMP/Smad 信号通路促进多孔磷酸钙陶瓷诱导的成骨作用。

Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway.

机构信息

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China.

Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China.

出版信息

Int J Nanomedicine. 2019 Oct 3;14:7987-8000. doi: 10.2147/IJN.S216182. eCollection 2019.


DOI:10.2147/IJN.S216182
PMID:31632013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6781424/
Abstract

BACKGROUND: The hierarchical porous structure and surface topography of calcium phosphate (CaP) bioceramics have a crucial impact on their osteoinductivity. PURPOSE: To fabricate a biomimetic bone graft with an interconnected porous structure analogous to that of trabecular bone and a bioactive nanostructured surface with excellent osteoinductive potential. MATERIALS AND METHODS: A biphasic CaP (BCP) substrate with highly porous structure was fabricated by an improved sponge replication method. Surface modification was performed by uniformly depositing a hydroxyapatite (HA) nanoparticle layer to create nHA-coated BCP scaffolds. The effects of these scaffolds on osteogenic differentiation of murine bone marrow-derived stem cells (BMSCs) were investigated in vitro, and their osteoinductivity was further assessed in vivo. RESULTS: The BCP and nHA-coated BCP scaffolds had similar trabecular bone-like architectures but different surface structures, with mean grain sizes of ~55 nm and ~1 μm, respectively. Compared with the BCP substrate, the nHA-coated BCP scaffolds favored cell adhesion and promoted osteogenic differentiation of BMSCs, as evidenced by upregulated expression of osteogenic genes, enhanced alkaline phosphatase activity, and increased osteocalcin production. This could be attributed to activation of the BMP/Smad signaling pathway, as significantly higher expression levels of BMPRI, Smad1, Smad4, and Smad5 were observed in the nHA-coated BCP group. The nHA-coated BCP scaffold not only maintained scaffold integrity but also induced ectopic bone formation when implanted into rabbit dorsal muscle in vivo for 90 days, whereas the BCP substrate underwent marked biodegradation that led to severe inflammation with no sign of osteogenesis. CONCLUSION: The present study demonstrates the potential of this biomimetic bone graft with a trabecular framework and nanotopography for use in orthopedic applications.

摘要

背景:磷酸钙(CaP)生物陶瓷的分级多孔结构和表面形貌对其成骨活性有至关重要的影响。

目的:制备具有类似于小梁骨的连通多孔结构和具有优异成骨活性的生物活性纳米结构表面的仿生骨移植物。

材料与方法:通过改进的海绵复制法制备了具有高度多孔结构的双相 CaP(BCP)基底。通过均匀沉积羟基磷灰石(HA)纳米颗粒层进行表面改性,以在 nHA 涂覆的 BCP 支架上形成 nHA 涂层。在体外研究了这些支架对鼠骨髓源性干细胞(BMSCs)成骨分化的影响,并进一步在体内评估了它们的成骨活性。

结果:BCP 和 nHA 涂覆的 BCP 支架具有相似的小梁骨样结构,但表面结构不同,平均晶粒尺寸分别约为 55nm 和 1μm。与 BCP 基底相比,nHA 涂覆的 BCP 支架更有利于细胞黏附,并促进 BMSCs 的成骨分化,表现为成骨基因表达上调、碱性磷酸酶活性增强和骨钙素产生增加。这可能归因于 BMP/Smad 信号通路的激活,因为在 nHA 涂覆的 BCP 组中观察到 BMPRI、Smad1、Smad4 和 Smad5 的表达水平显著升高。nHA 涂覆的 BCP 支架不仅保持了支架的完整性,而且在体内植入兔背肌 90 天后还诱导异位骨形成,而 BCP 基底则经历了明显的生物降解,导致严重的炎症,没有成骨的迹象。

结论:本研究证明了这种具有小梁框架和纳米形貌的仿生骨移植物在骨科应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/bc25b46ab857/IJN-14-7987-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/69c424ff9838/IJN-14-7987-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/5dbe5d6d5a23/IJN-14-7987-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/eebb1b62a1bd/IJN-14-7987-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/7a246f5c2f85/IJN-14-7987-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/51cfbb8437e6/IJN-14-7987-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/15ab58c7cabd/IJN-14-7987-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/5874fc31207e/IJN-14-7987-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/fb5ec44a5d3a/IJN-14-7987-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/bc25b46ab857/IJN-14-7987-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/69c424ff9838/IJN-14-7987-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/5dbe5d6d5a23/IJN-14-7987-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/eebb1b62a1bd/IJN-14-7987-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/7a246f5c2f85/IJN-14-7987-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/51cfbb8437e6/IJN-14-7987-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/15ab58c7cabd/IJN-14-7987-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/5874fc31207e/IJN-14-7987-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/fb5ec44a5d3a/IJN-14-7987-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b7e/6781424/bc25b46ab857/IJN-14-7987-g0009.jpg

相似文献

[1]
Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway.

Int J Nanomedicine. 2019-10-3

[2]
Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics.

BMC Musculoskelet Disord. 2014-4-1

[3]
Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

J Mater Sci Mater Med. 2015-11

[4]
Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

J Biomed Mater Res A. 2015-3

[5]
Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics.

Acta Biomater. 2020-2

[6]
The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs.

Biomaterials. 2013-3-17

[7]
Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.

Acta Biomater. 2017-12-12

[8]
The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells.

Acta Biomater. 2018-4-18

[9]
PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.

Acta Biomater. 2016-10-15

[10]
Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin.

Int J Nanomedicine. 2018-1-25

引用本文的文献

[1]
Regulation of Bone Remodeling by Metal-Phenolic Networks for the Treatment of Systemic Osteoporosis.

ACS Appl Mater Interfaces. 2025-1-29

[2]
Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments.

Regen Biomater. 2024-11-5

[3]
Nanostructure-Mediated Photothermal Effect for Reinforcing Physical Killing Activity of Nanorod Arrays.

Adv Sci (Weinh). 2025-1

[4]
Personalized bioceramic grafts for craniomaxillofacial bone regeneration.

Int J Oral Sci. 2024-10-31

[5]
The Role of Bovine Amniotic Membrane and Hydroxyapatite for the Ridge Preservation.

Int J Biomater. 2024-9-14

[6]
Nano-hydroxyapatite promotes cell apoptosis by co-activating endoplasmic reticulum stress and mitochondria damage to inhibit glioma growth.

Regen Biomater. 2024-4-18

[7]
Applications of PLA in modern medicine.

Eng Regen. 2020

[8]
Cross Talk Between Cells and the Current Bioceramics in Bone Regeneration: A Comprehensive Review.

Cell Transplant. 2024

[9]
Regulation of the immune microenvironment by pioglitazone-loaded polylactic glycolic acid nanosphere composite scaffolds to promote vascularization and bone regeneration.

J Tissue Eng. 2024-2-14

[10]
DLP fabrication of HA scaffold with customized porous structures to regulate immune microenvironment and macrophage polarization for enhancing bone regeneration.

Mater Today Bio. 2023-12-29

本文引用的文献

[1]
Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways.

J Mater Chem B. 2013-10-28

[2]
The in vitro and in vivo anti-melanoma effects of hydroxyapatite nanoparticles: influences of material factors.

Int J Nanomedicine. 2019-2-15

[3]
The material and biological characteristics of osteoinductive calcium phosphate ceramics.

Regen Biomater. 2018-2

[4]
Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts.

J Biomed Mater Res B Appl Biomater. 2018-1-9

[5]
Synergistic effect of nanotopography and bioactive ions on peri-implant bone response.

Int J Nanomedicine. 2017-1-27

[6]
Nano-Hydroxyapatite Bone Substitute Functionalized with Bone Active Molecules for Enhanced Cranial Bone Regeneration.

ACS Appl Mater Interfaces. 2017-2-20

[7]
Preparation and Properties of Bamboo Fiber/Nano-hydroxyapatite/Poly(lactic-co-glycolic) Composite Scaffold for Bone Tissue Engineering.

ACS Appl Mater Interfaces. 2017-1-25

[8]
Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research.

Mater Sci Eng C Mater Biol Appl. 2016-11-12

[9]
Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO nanotubes.

Int J Pharm. 2017-1-30

[10]
Comparison of ectopic bone formation process induced by four calcium phosphate ceramics in mice.

Mater Sci Eng C Mater Biol Appl. 2017-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索