Tysiąc Paweł, Ossowski Rafał, Janowski Łukasz, Moskalewicz Damian
Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland.
Maritime Institute, Gdynia Maritime University, Roberta de Plelo 20, 80-548, Gdańsk, Poland.
Sci Rep. 2025 Jan 3;15(1):704. doi: 10.1038/s41598-024-84404-1.
This study introduces a novel methodology for estimating and analysing coastal cliff degradation, using machine learning and remote sensing data. Degradation refers to both natural abrasive processes and damage to coastal reinforcement structures caused by natural events. We utilized orthophotos and LiDAR data in green and near-infrared wavelengths to identify zones impacted by storms and extreme weather events that initiated mass movement processes. Our approach included change detection analysis to estimate eroded areas. Next, by applying Random Forest classifier within Google Earth Engine, we evaluated the importance of features in detecting these degraded zones. We tested the algorithm's performance using datasets of varying resolutions (10 cm, 20 cm, 50 cm, and 100 cm), and a UAV dataset acquired two years later to validate results. The classifier achieved an overall accuracy of approximately 90% across all datasets. The findings indicate that DEM products in green and near-infrared wavelengths are similarly important, while reflectance maps and orthophotos suggest that red and near-infrared wavelengths play a significant role in identifying degradation. These results suggest that it is feasible to monitor coastal degradation caused by natural disasters using diverse sensors within a single training framework.
本研究介绍了一种利用机器学习和遥感数据估算及分析海岸悬崖退化的新方法。退化既指自然侵蚀过程,也指自然事件对海岸加固结构造成的破坏。我们利用绿色和近红外波段的正射影像和激光雷达数据,识别受风暴和引发大规模移动过程的极端天气事件影响的区域。我们的方法包括变化检测分析以估算侵蚀区域。接下来,通过在谷歌地球引擎中应用随机森林分类器,我们评估了检测这些退化区域时各特征的重要性。我们使用不同分辨率(10厘米、20厘米、50厘米和100厘米)的数据集测试了该算法的性能,并使用两年后获取的无人机数据集来验证结果。该分类器在所有数据集上的总体准确率约为90%。研究结果表明,绿色和近红外波段的数字高程模型产品同样重要,而反射率图和正射影像表明红色和近红外波段在识别退化方面发挥着重要作用。这些结果表明,在单一训练框架内使用多种传感器监测自然灾害导致的海岸退化是可行的。