Suppr超能文献

磁性可分离漆酶-生物炭复合材料实现喹诺酮类抗生素的高效吸附降解:固定化、去除性能及机制

Magnetically separable laccase-biochar composite enable highly efficient adsorption-degradation of quinolone antibiotics: Immobilization, removal performance and mechanisms.

作者信息

Zou Mengyuan, Tian Weijun, Chu Meile, Lu Zhiyang, Liu Bingkun, Xu Dongpo

机构信息

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China.

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; Laoshan Laboratory, Qingdao 266234, PR China.

出版信息

Sci Total Environ. 2023 Jun 25;879:163057. doi: 10.1016/j.scitotenv.2023.163057. Epub 2023 Mar 24.

Abstract

The tremendous potential of hybrid technologies for the elimination of quinolone antibiotics has recently attracted considerable attention. This current work prepared a magnetically modified biochar (MBC) immobilized laccase product named LC-MBC through response surface methodology (RSM), and LC-MBC showed an excellent capacity in the removal of norfloxacin (NOR), enrofloxacin (ENR) and moxifloxacin (MFX) from aqueous solution. The superior pH, thermal, storage and operational stability demonstrated by LC-MBC revealed its potential for sustainable application. The removal efficiencies of LC-MBC in the presence of 1 mM 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) for NOR, ENR and MFX were 93.7 %, 65.4 % and 77.0 % at pH 4 and 40 °C after 48 h reaction, respectively, which were 1.2, 1.3 and 1.3 times higher than those of MBC under the same conditions. The synergistic effect of adsorption by MBC and degradation by laccase dominated the removal of quinolone antibiotics by LC-MBC. Pore-filling, electrostatic, hydrophobic, π-π interactions, surface complexation and hydrogen bonding contributed in the adsorption process. The attacks on the quinolone core and piperazine moiety were involved in the degradation process. This study underscored the possibility of immobilization of laccase on biochar for enhanced remediation of quinolone antibiotics-contaminated wastewater. The proposed physical adsorption-biodegradation system (LC-MBC-ABTS) provided a novel perspective for the efficient and sustainable removal of antibiotics in actual wastewater through combined multi-methods.

摘要

混合技术在去除喹诺酮类抗生素方面的巨大潜力最近引起了广泛关注。本研究通过响应面法(RSM)制备了一种磁性改性生物炭(MBC)固定化漆酶产物,命名为LC-MBC,LC-MBC在从水溶液中去除诺氟沙星(NOR)、恩诺沙星(ENR)和莫西沙星(MFX)方面表现出优异的能力。LC-MBC表现出的卓越pH稳定性、热稳定性、储存稳定性和操作稳定性揭示了其可持续应用的潜力。在1 mM 2,2'-联氮-双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)存在下,LC-MBC在pH 4和40°C条件下反应48小时后对NOR、ENR和MFX的去除效率分别为93.7%、65.4%和77.0%,分别是相同条件下MBC去除效率的1.2倍、1.3倍和1.3倍。MBC的吸附作用与漆酶的降解作用协同主导了LC-MBC对喹诺酮类抗生素的去除。孔隙填充、静电作用、疏水作用、π-π相互作用、表面络合和氢键作用在吸附过程中发挥了作用。对喹诺酮核心和哌嗪部分的攻击参与了降解过程。本研究强调了将漆酶固定在生物炭上以增强修复喹诺酮类抗生素污染废水的可能性。所提出的物理吸附-生物降解系统(LC-MBC-ABTS)为通过多种方法组合高效且可持续地去除实际废水中的抗生素提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验