Suppr超能文献

粤港澳大湾区最优情景下未来湿地变化评估及土地退化中立性分析

Evaluation of future wetland changes under optimal scenarios and land degradation neutrality analysis in the Guangdong-Hong Kong-Macao Greater Bay Area.

作者信息

Peng Kaifeng, Jiang Weiguo, Wang Xuejun, Hou Peng, Wu Zhifeng, Cui Tiejun

机构信息

School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China.

State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.

出版信息

Sci Total Environ. 2023 Jun 25;879:163111. doi: 10.1016/j.scitotenv.2023.163111. Epub 2023 Mar 24.

Abstract

Wetlands are one of the most productive ecosystems on Earth and are also focused on by the Sustainable Development Goals (SDGs). However, global wetlands have suffered from considerable degradation due to rapid urbanization and climate change. To support wetland protection and SDG reporting, we predicted future wetland changes and assessed land degradation neutrality (LDN) from 2020 to 2035 under four scenarios in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). A simulation model combining random forest (RF), CLUE-S and multi-objective programming (MOP) methods was developed to predict wetland patterns under the natural increase scenario (NIS), economic development scenario (EDS), ecological protection and restoration scenario (ERPS) and harmonious development scenario (HDS). The simulation results indicated that the integration of RF and CLUE-S achieved good simulation accuracy, with OA over 0.86 and kappa indices over 0.79. From 2020 to 2035, the mangrove, tidal flat and agricultural pond increased while the coastal shallow water decreased under all scenarios. The river decreased under NIS and EDS, while increased under ERPS and HDS. The Reservoir decreased under NIS, while increased under the remaining scenarios. Among scenarios, the EDS had the largest built-up land and agricultural pond, and the ERPS had the largest forest and grassland. The HDS was a coordinated scenario that balanced economic development and ecological protection. Its natural wetlands were almost equal to these of ERPS, and its built-up land and cropland were almost equal to these of EDS. Then, the land degradation and SDG 15.3.1 indicators were calculated to support the LDN target. From 2020 to 2035, the ERPS had a smallest gap of 705.51 km from the LDN target, following the HDS, EDS and NIS. The SDG 15.3.1 indicator was lowest under the ERPS, with a value of 0.85 %. Our study could offer strong support for urban sustainable development and SDGs reporting.

摘要

湿地是地球上生产力最高的生态系统之一,也是可持续发展目标(SDGs)关注的重点。然而,由于快速城市化和气候变化,全球湿地遭受了相当程度的退化。为了支持湿地保护和可持续发展目标报告,我们预测了粤港澳大湾区(GBA)在四种情景下2020年至2035年未来湿地的变化,并评估了土地退化中立(LDN)情况。开发了一种结合随机森林(RF)、CLUE-S和多目标规划(MOP)方法的模拟模型,以预测自然增长情景(NIS)、经济发展情景(EDS)、生态保护与恢复情景(ERPS)和协调发展情景(HDS)下的湿地格局。模拟结果表明,RF和CLUE-S的整合实现了良好的模拟精度,总体精度超过0.86,kappa指数超过0.79。从2020年到2035年,在所有情景下,红树林、潮滩和农用池塘面积增加,而沿海浅水面积减少。在NIS和EDS情景下河流面积减少,而在ERPS和HDS情景下增加。水库面积在NIS情景下减少,而在其余情景下增加。在这些情景中,EDS情景下的建设用地和农用池塘面积最大,ERPS情景下的森林和草地面积最大。HDS是一个平衡经济发展和生态保护的协调情景方案。其天然湿地面积几乎与ERPS情景下的相等,其建设用地和耕地面积几乎与EDS情景下的相等。然后,计算土地退化和可持续发展目标15.3.1指标以支持LDN目标。从2020年到2035年,ERPS情景与LDN目标的差距最小,为705.51平方公里,其次是HDS、EDS和NIS情景。可持续发展目标15.3.1指标在ERPS情景下最低,值为0.85%。我们的研究可为城市可持续发展和可持续发展目标报告提供有力支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验