Department of Neuroscience & Biomedical Engineering, Aalto University, Espoo, Finland; BioMag laboratory, HUS Medical Imaging Centre, Helsinki, Finland.
Department of Neuroscience & Biomedical Engineering, Aalto University, Espoo, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; INRIA (National Institute for Research in Digital Science & Technology) Saclay, MIND team, Université Paris-Saclay, Paris, France; CEA (French Alternative Energies and Atomic Energy Commission)/ Neurospin, Paris, France.
Neuroimage. 2023 May 15;272:120036. doi: 10.1016/j.neuroimage.2023.120036. Epub 2023 Mar 24.
Modules in brain functional connectomes are essential to balancing segregation and integration of neuronal activity. Connectomes are the complete set of pairwise connections between brain regions. Non-invasive Electroencephalography (EEG) and Magnetoencephalography (MEG) have been used to identify modules in connectomes of phase-synchronization. However, their resolution is suboptimal because of spurious phase-synchronization due to EEG volume conduction or MEG field spread. Here, we used invasive, intracerebral recordings from stereo-electroencephalography (SEEG, N = 67), to identify modules in connectomes of phase-synchronization. To generate SEEG-based group-level connectomes affected only minimally by volume conduction, we used submillimeter accurate localization of SEEG contacts and referenced electrode contacts in cortical gray matter to their closest contacts in white matter. Combining community detection methods with consensus clustering, we found that the connectomes of phase-synchronization were characterized by distinct and stable modules at multiple spatial scales, across frequencies from 3 to 320 Hz. These modules were highly similar within canonical frequency bands. Unlike the distributed brain systems identified with functional Magnetic Resonance Imaging (fMRI), modules up to the high-gamma frequency band comprised only anatomically contiguous regions. Notably, the identified modules comprised cortical regions involved in shared repertoires of sensorimotor and cognitive functions including memory, language and attention. These results suggest that the identified modules represent functionally specialised brain systems, which only partially overlap with the brain systems reported with fMRI. Hence, these modules might regulate the balance between functional segregation and functional integration through phase-synchronization.
脑功能连接组中的模块对于平衡神经元活动的分隔和整合至关重要。连接组是大脑区域之间所有成对连接的集合。非侵入性脑电图 (EEG) 和脑磁图 (MEG) 已被用于识别相位同步连接组中的模块。然而,由于 EEG 容积传导或 MEG 场扩散导致的虚假相位同步,它们的分辨率并不理想。在这里,我们使用立体脑电图 (SEEG,N=67) 的侵入性颅内记录来识别相位同步连接组中的模块。为了生成受容积传导影响最小的 SEEG 基群体水平连接组,我们使用 SEEG 触点的亚毫米精确定位,并将皮质灰质中的参考电极触点与其在白质中的最近触点进行参考。我们结合社区检测方法和共识聚类,发现相位同步的连接组在多个空间尺度上具有独特而稳定的模块,频率范围从 3 到 320 Hz。这些模块在典型频带内非常相似。与使用功能磁共振成像 (fMRI) 识别的分布式大脑系统不同,高达高频带的模块仅由解剖上连续的区域组成。值得注意的是,所识别的模块包含涉及感觉运动和认知功能共享组合的皮质区域,包括记忆、语言和注意力。这些结果表明,所识别的模块代表功能专业化的大脑系统,这些系统与 fMRI 报告的大脑系统只有部分重叠。因此,这些模块可能通过相位同步调节功能分隔和功能整合之间的平衡。