MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
Neuroimage. 2018 Apr 1;169:23-45. doi: 10.1016/j.neuroimage.2017.09.009. Epub 2017 Sep 8.
There is growing interest in the rich temporal and spectral properties of the functional connectome of the brain that are provided by Electro- and Magnetoencephalography (EEG/MEG). However, the problem of leakage between brain sources that arises when reconstructing brain activity from EEG/MEG recordings outside the head makes it difficult to distinguish true connections from spurious connections, even when connections are based on measures that ignore zero-lag dependencies. In particular, standard anatomical parcellations for potential cortical sources tend to over- or under-sample the real spatial resolution of EEG/MEG. By using information from cross-talk functions (CTFs) that objectively describe leakage for a given sensor configuration and distributed source reconstruction method, we introduce methods for optimising the number of parcels while simultaneously minimising the leakage between them. More specifically, we compare two image segmentation algorithms: 1) a split-and-merge (SaM) algorithm based on standard anatomical parcellations and 2) a region growing (RG) algorithm based on all the brain vertices with no prior parcellation. Interestingly, when applied to minimum-norm reconstructions for EEG/MEG configurations from real data, both algorithms yielded approximately 70 parcels despite their different starting points, suggesting that this reflects the resolution limit of this particular sensor configuration and reconstruction method. Importantly, when compared against standard anatomical parcellations, resolution matrices of adaptive parcellations showed notably higher sensitivity and distinguishability of parcels. Furthermore, extensive simulations of realistic networks revealed significant improvements in network reconstruction accuracies, particularly in reducing false leakage-induced connections. Adaptive parcellations therefore allow a more accurate reconstruction of functional EEG/MEG connectomes.
人们对脑功能连接组的丰富时间和频谱特性越来越感兴趣,这些特性是通过脑电图(EEG)和脑磁图(MEG)提供的。然而,当从头部外的 EEG/MEG 记录重建脑活动时,脑源之间的漏泄问题使得很难区分真实连接和虚假连接,即使连接是基于忽略零延迟依赖的测量值。特别是,潜在皮质源的标准解剖分割往往会过度或不足采样 EEG/MEG 的真实空间分辨率。通过使用跨 Talk 函数(CTFs)的信息,这些函数客观地描述了给定传感器配置和分布式源重建方法的漏泄情况,我们引入了优化包裹数量的方法,同时最小化它们之间的漏泄。更具体地说,我们比较了两种图像分割算法:1)基于标准解剖分割的分裂-合并(SaM)算法和 2)基于没有先验分割的所有大脑顶点的区域生长(RG)算法。有趣的是,当应用于来自真实数据的 EEG/MEG 配置的最小范数重建时,尽管这两种算法的起点不同,但都产生了大约 70 个包裹,这表明这反映了特定传感器配置和重建方法的分辨率限制。重要的是,与标准解剖分割相比,自适应分割的分辨率矩阵显示出包裹的更高敏感性和可区分性。此外,对现实网络的广泛模拟揭示了网络重建精度的显著提高,特别是在减少虚假漏泄诱导的连接方面。因此,自适应分割允许更准确地重建功能 EEG/MEG 连接组。