School of Software Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
School of Artificial Intelligence, Xidian University, Xi'an, Shaanxi, China.
Med Phys. 2023 Dec;50(12):7806-7821. doi: 10.1002/mp.16384. Epub 2023 Apr 6.
Ultrasound plays a critical role in the early screening and diagnosis of cancers. Although deep neural networks have been widely investigated in the computer-aided diagnosis (CAD) of different medical images, diverse ultrasound devices, and image modalities pose challenges for clinical applications, especially in the recognition of thyroid nodules having various shapes and sizes. More generalized and extensible methods need to be developed for the cross-devices recognition of thyroid nodules.
In this work, a semi-supervised graph convolutional deep learning framework is proposed for the domain adaptative recognition of thyroid nodules across several ultrasound devices. A deep classification network, trained on a source domain with a specific device, can be transferred to recognize thyroid nodules on the target domain with other devices, using only few manual annotated ultrasound images.
This study presents a semi-supervised graph-convolutional-network-based domain adaptation framework, namely Semi-GCNs-DA. Based on the ResNet backbone, it is extended in three aspects for domain adaptation, that is, graph convolutional networks (GCNs) for the connection construction between source and target domains, semi-supervised GCNs for accurate target domain recognition, and pseudo labels for unlabeled target domains. Data were collected from 1498 patients comprising 12 108 images with or without thyroid nodules under three different ultrasound devices. Accuracy, Sensitivity and Specificity were used for the performance evaluation.
The proposed method was validated on six groups of data for a single source domain adaptation task, the mean Accuracy was 0.9719 ± 0.0023, 0.9928 ± 0.0022, 0.9353 ± 0.0105, 0.8727 ± 0.0021, 0.7596 ± 0.0045, 0.8482 ± 0.0092, which achieved better performance in comparison with the state-of-the-art. The proposed method was also validated on three groups of multiple source domain adaptation tasks. In particular, when using X60 and HS50 as the source domain data, and H60 as the target domain, it can achieve the Accuracy of 0.8829 ± 0.0079, Sensitivity of 0.9757 ± 0.0001, and Specificity of 0.7894 ± 0.0164. Ablation experiments also demonstrated the effectiveness of the proposed modules.
The developed Semi-GCNs-DA framework can effectively recognize thyroid nodules on different ultrasound devices. The developed semi-supervised GCNs can be further extended to the domain adaptation problems for other modalities of medical images.
超声在癌症的早期筛查和诊断中起着至关重要的作用。尽管深度学习网络已在不同医学图像的计算机辅助诊断(CAD)中得到广泛研究,但不同的超声设备和图像模态给临床应用带来了挑战,尤其是在识别具有各种形状和大小的甲状腺结节方面。需要开发更通用和可扩展的方法来实现跨设备的甲状腺结节识别。
在这项工作中,我们提出了一种基于半监督图卷积深度学习的框架,用于跨多个超声设备对甲状腺结节进行域自适应识别。经过特定设备的源域训练的深度分类网络,可以转移到使用其他设备识别目标域的甲状腺结节,仅使用少量手动标注的超声图像。
本研究提出了一种基于半监督图卷积网络的域自适应框架,即 Semi-GCNs-DA。它基于 ResNet 骨干网络,从三个方面进行了扩展,用于域自适应,即源域和目标域之间的连接构建的图卷积网络(GCNs)、用于准确识别目标域的半监督 GCNs 以及用于无标签目标域的伪标签。数据来自 1498 名患者,共包含 12108 张有或无甲状腺结节的图像,分别来自三种不同的超声设备。使用准确率、敏感性和特异性进行性能评估。
所提出的方法在六个组的数据上进行了单源域自适应任务的验证,平均准确率为 0.9719±0.0023、0.9928±0.0022、0.9353±0.0105、0.8727±0.0021、0.7596±0.0045、0.8482±0.0092,与现有技术相比,表现更好。该方法还在三组多源域自适应任务上进行了验证。特别是当将 X60 和 HS50 作为源域数据,将 H60 作为目标域时,它可以实现准确率为 0.8829±0.0079、敏感性为 0.9757±0.0001、特异性为 0.7894±0.0164。消融实验也证明了所提出模块的有效性。
所开发的 Semi-GCNs-DA 框架可以有效地识别不同超声设备上的甲状腺结节。所开发的半监督 GCN 可以进一步扩展到其他医学图像模态的域自适应问题。