Suppr超能文献

使用临床知识引导的卷积神经网络自动检测和分类超声图像中的甲状腺结节。

Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks.

机构信息

State Key Laboratory of Intelligent Technology and Systems, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

National Cancer Center/Cancer Hospital of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.

出版信息

Med Image Anal. 2019 Dec;58:101555. doi: 10.1016/j.media.2019.101555. Epub 2019 Sep 5.

Abstract

Accurate diagnosis of thyroid nodules using ultrasonography is a valuable but tough task even for experienced radiologists, considering both benign and malignant nodules have heterogeneous appearances. Computer-aided diagnosis (CAD) methods could potentially provide objective suggestions to assist radiologists. However, the performance of existing learning-based approaches is still limited, for direct application of general learning models often ignores critical domain knowledge related to the specific nodule diagnosis. In this study, we propose a novel deep-learning-based CAD system, guided by task-specific prior knowledge, for automated nodule detection and classification in ultrasound images. Our proposed CAD system consists of two stages. First, a multi-scale region-based detection network is designed to learn pyramidal features for detecting nodules at different feature scales. The region proposals are constrained by the prior knowledge about size and shape distributions of real nodules. Then, a multi-branch classification network is proposed to integrate multi-view diagnosis-oriented features, in which each network branch captures and enhances one specific group of characteristics that were generally used by radiologists. We evaluated and compared our method with the state-of-the-art CAD methods and experienced radiologists on two datasets, i.e. Dataset I and Dataset II. The detection and diagnostic accuracy on Dataset I were 97.5% and 97.1%, respectively. Besides, our CAD system also achieved better performance than experienced radiologists on Dataset II, with improvements of accuracy for 8%. The experimental results demonstrate that our proposed method is effective in the discrimination of thyroid nodules.

摘要

使用超声技术准确诊断甲状腺结节是一项极具价值但又极具挑战性的任务,即使对于有经验的放射科医生而言也是如此,因为良性和恶性结节的表现均具有异质性。计算机辅助诊断(CAD)方法有可能提供客观的建议来协助放射科医生。然而,现有的基于学习的方法的性能仍然有限,因为一般学习模型的直接应用往往忽略了与特定结节诊断相关的关键领域知识。在本研究中,我们提出了一种新的基于深度学习的 CAD 系统,该系统由特定于任务的先验知识指导,用于在超声图像中自动进行结节检测和分类。我们提出的 CAD 系统由两个阶段组成。首先,设计了一个多尺度基于区域的检测网络,用于学习不同特征尺度下的结节检测金字塔特征。区域提案受到真实结节大小和形状分布的先验知识的约束。然后,提出了一种多分支分类网络,用于整合多视图面向诊断的特征,其中每个网络分支捕获和增强了放射科医生通常使用的特定组特征。我们在两个数据集(即数据集 I 和数据集 II)上评估并比较了我们的方法与最先进的 CAD 方法和有经验的放射科医生的方法。在数据集 I 上的检测和诊断准确率分别为 97.5%和 97.1%。此外,我们的 CAD 系统在数据集 II 上也优于有经验的放射科医生,其准确率提高了 8%。实验结果表明,我们提出的方法在甲状腺结节的鉴别中是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验