Suppr超能文献

基于超声图像注意力门控协同监督网络的甲状腺结节内钙化的识别。

Recognition of calcifications in thyroid nodules based on attention-gated collaborative supervision network of ultrasound images.

机构信息

Department of Biomedical Engineering, Sichuan University, Chengdu, China.

Highong Intellimage Medical Technology (Tianjin) Co., Ltd, Tianjin, China.

出版信息

J Xray Sci Technol. 2020;28(6):1123-1139. doi: 10.3233/XST-200740.

Abstract

BACKGROUND

Calcification is an important criterion for classification between benign and malignant thyroid nodules. Deep learning provides an important means for automatic calcification recognition, but it is tedious to annotate pixel-level labels for calcifications with various morphologies.

OBJECTIVE

This study aims to improve accuracy of calcification recognition and prediction of its location, as well as to reduce the number of pixel-level labels in model training.

METHODS

We proposed a collaborative supervision network based on attention gating (CS-AGnet), which was composed of two branches: a segmentation network and a classification network. The reorganized two-stage collaborative semi-supervised model was trained under the supervision of all image-level labels and few pixel-level labels.

RESULTS

The results show that although our semi-supervised network used only 30% (289 cases) of pixel-level labels for training, the accuracy of calcification recognition reaches 92.1%, which is very close to 92.9% of deep supervision with 100% (966 cases) pixel-level labels. The CS-AGnet enables to focus the model's attention on calcification objects. Thus, it achieves higher accuracy than other deep learning methods.

CONCLUSIONS

Our collaborative semi-supervised model has a preferable performance in calcification recognition, and it reduces the number of manual annotations of pixel-level labels. Moreover, it may be of great reference for the object recognition of medical dataset with few labels.

摘要

背景

钙化是甲状腺良恶性结节分类的重要标准。深度学习为自动钙化识别提供了重要手段,但对于具有各种形态的钙化进行像素级标签标注非常繁琐。

目的

本研究旨在提高钙化识别的准确性和位置预测的准确性,并减少模型训练中的像素级标签数量。

方法

我们提出了一种基于注意力门控的协作监督网络(CS-AGnet),它由两个分支组成:分割网络和分类网络。在所有图像级标签和少量像素级标签的监督下,重新组织两阶段协作半监督模型进行训练。

结果

结果表明,尽管我们的半监督网络仅使用了 30%(289 例)的像素级标签进行训练,但钙化识别的准确率达到 92.1%,与使用 100%(966 例)像素级标签的深度监督的 92.9%非常接近。CS-AGnet 使模型能够专注于钙化对象,从而实现了比其他深度学习方法更高的准确性。

结论

我们的协作半监督模型在钙化识别方面具有较好的性能,减少了像素级标签的人工标注数量。此外,它可能对具有少量标签的医学数据集的对象识别具有重要参考价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验