Lepetit Marc, Brouquisse Renaud
Institut Sophia Agrobiotech, Institut National de Recherche pour l'Agriculture (INRAE), l'alimentation et l'Environnement, Université Côte d'Azur, Centre National de Recherche Scientifique (CNRS), Sophia-Antipolis, France.
Front Plant Sci. 2023 Mar 9;14:1114840. doi: 10.3389/fpls.2023.1114840. eCollection 2023.
Symbiotic nodules formed on legume roots with rhizobia fix atmospheric N. Bacteria reduce N to NH that is assimilated into amino acids by the plant. In return, the plant provides photosynthates to fuel the symbiotic nitrogen fixation. Symbiosis is tightly adjusted to the whole plant nutritional demand and to the plant photosynthetic capacities, but regulatory circuits behind this control remain poorly understood. The use of split-root systems combined with biochemical, physiological, metabolomic, transcriptomic, and genetic approaches revealed that multiple pathways are acting in parallel. Systemic signaling mechanisms of the plant N demand are required for the control of nodule organogenesis, mature nodule functioning, and nodule senescence. N-satiety/N-deficit systemic signaling correlates with rapid variations of the nodules' sugar levels, tuning symbiosis by C resources allocation. These mechanisms are responsible for the adjustment of plant symbiotic capacities to the mineral N resources. On the one hand, if mineral N can satisfy the plant N demand, nodule formation is inhibited, and nodule senescence is activated. On the other hand, local conditions (abiotic stresses) may impair symbiotic activity resulting in plant N limitation. In these conditions, systemic signaling may compensate the N deficit by stimulating symbiotic root N foraging. In the past decade, several molecular components of the systemic signaling pathways controlling nodule formation have been identified, but a major challenge remains, that is, to understand their specificity as compared to the mechanisms of non-symbiotic plants that control root development and how they contribute to the whole plant phenotypes. Less is known about the control of mature nodule development and functioning by N and C nutritional status of the plant, but a hypothetical model involving the sucrose allocation to the nodule as a systemic signaling process, the oxidative pentose phosphate pathway, and the redox status as potential effectors of this signaling is emerging. This work highlights the importance of organism integration in plant biology.
豆科植物根系与根瘤菌形成的共生根瘤可固定大气中的氮。细菌将氮还原为铵,植物再将铵同化为氨基酸。作为回报,植物提供光合产物以支持共生固氮作用。共生作用与植物的整体营养需求及光合能力紧密协调,但这种调控背后的信号通路仍知之甚少。采用分根系统结合生化、生理、代谢组学、转录组学及遗传学方法研究发现,多条途径并行发挥作用。植物对氮需求的系统信号传导机制对于根瘤器官发生、成熟根瘤功能及根瘤衰老的调控至关重要。氮充足/缺乏的系统信号传导与根瘤糖水平的快速变化相关,通过碳资源分配调节共生作用。这些机制负责使植物共生能力与矿质氮资源相适应。一方面,如果矿质氮能满足植物对氮的需求,根瘤形成就会受到抑制,根瘤衰老则会被激活。另一方面,局部环境条件(非生物胁迫)可能损害共生活性,导致植物氮素受限。在这种情况下,系统信号传导可能通过刺激共生根系对氮的获取来弥补氮的不足。在过去十年中,已鉴定出控制根瘤形成的系统信号传导途径的几个分子成分,但仍面临一个重大挑战,即了解它们与控制根系发育的非共生植物机制相比的特异性,以及它们如何影响植物整体表型。关于植物氮和碳营养状况对成熟根瘤发育及功能的调控了解较少,但一个涉及将蔗糖分配到根瘤作为系统信号传导过程、氧化戊糖磷酸途径以及氧化还原状态作为该信号潜在效应器的假说模型正在形成。这项工作突出了生物体整合在植物生物学中的重要性。