Ran Bingyu, Gong Jian, Shang Jingjie, Wei Feng, Xu Hao
Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
Front Oncol. 2023 Mar 9;13:1054594. doi: 10.3389/fonc.2023.1054594. eCollection 2023.
This study aimed to establish and validate the nomograms for predicting overall survival (OS) probabilities in differentiated thyroid cancer (DTC) patients who received and did not receive radioiodine therapy (RAI), respectively.
In this study, 11, 099 patients diagnosed with DTC in the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2016 were selected. Whether they have RAI, they are divided into RAI (n=6427) and non-RAI (n=4672) groups. They were randomly assigned to either a training cohort (RAI: n=4498, non-RAI: n=3263) or a validation cohort (RAI: n=1929, non-RAI: n=1399) using R software to divide the patients in a 7-to-3 ratio randomly. Variables were selected using a backward stepwise method in a Cox regression model to determine the independent prognostic factors, which were then utilized to build two nomograms to predict the 5-, 8-, and 10-year OS probabilities in DTC patients with or without RAI. The concordance index (C-index), the area under the time-dependent receiver operating characteristics curve (AUC), the net reclassification improvement (NRI), the integrated discrimination improvement (IDI), calibration plotting, and decision-curve analysis (DCA) were used to evaluate the performance of our models.
The multivariate analyses demonstrated that birth of the year, race, histological type, tumor size, grade, TNM stage, lymph node dissections, surgery, and chemotherapy were risk factors for OS. Compared to the AJCC stage, the C-index (RAI: training group: 0.911 vs. 0.810, validation group: 0.873 vs. 0.761; non-RAI: training group: 0.903 vs. 0.846, validation group: 0.892 vs. 0.808). The AUC values for the training cohort (RAI: 0.940, 0.933, and 0.942; non-RAI: 0.891, 0.884, and 0.852 for the 5-, 8-, and 10-year OS, respectively) and validation cohort (RAI: 0.855, 0.825, and 0.900, non-RAI: 0.867, 0.896, and 0.899), and the calibration plots of both two models all exhibited better performance. Additionally, the NRI and IDI further showed that they exhibited good 5-, 8-, and 10-year net benefits.
We have established the prediction models of DTC patients with or without RAI respectively through various variables. The nomogram may be more targeted to guide clinical decisions in the future.
本研究旨在分别建立并验证用于预测接受和未接受放射性碘治疗(RAI)的分化型甲状腺癌(DTC)患者总生存期(OS)概率的列线图。
本研究选取了2004年至2016年监测、流行病学和最终结果(SEER)数据库中11099例诊断为DTC的患者。无论是否接受RAI治疗,将他们分为RAI组(n = 6427)和非RAI组(n = 4672)。使用R软件以7比3的比例将患者随机分配到训练队列(RAI组:n = 4498,非RAI组:n = 3263)或验证队列(RAI组:n = 1929,非RAI组:n = 1399)。在Cox回归模型中采用向后逐步法选择变量以确定独立预后因素,然后利用这些因素构建两个列线图,以预测接受或未接受RAI治疗的DTC患者5年、8年和10年的OS概率。采用一致性指数(C指数)、时间依赖性受试者工作特征曲线下面积(AUC)、净重新分类改善(NRI)、综合判别改善(IDI)、校准曲线绘制和决策曲线分析(DCA)来评估我们模型的性能。
多因素分析表明,出生年份、种族、组织学类型、肿瘤大小、分级、TNM分期、淋巴结清扫、手术和化疗是OS的危险因素。与美国癌症联合委员会(AJCC)分期相比,C指数(RAI组:训练组:0.911对0.810,验证组:0.873对0.761;非RAI组:训练组:0.903对0.846,验证组:0.892对0.808)。训练队列的AUC值(RAI组:5年、8年和10年OS分别为0.940、0.933和0.942;非RAI组分别为0.891、0.884和0.852)和验证队列(RAI组:0.855、0.825和0.900,非RAI组:0.867、0.896和0.899),并且两个模型的校准曲线均表现出更好的性能。此外,NRI和IDI进一步表明它们在5年、8年和10年具有良好的净效益。
我们分别通过各种变量建立了接受或未接受RAI治疗的DTC患者的预测模型。该列线图未来可能更有针对性地指导临床决策。