Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States.
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States.
Front Immunol. 2023 Mar 9;14:1135815. doi: 10.3389/fimmu.2023.1135815. eCollection 2023.
Licensed COVID-19 vaccines ameliorate viral infection by inducing production of neutralizing antibodies that bind the SARS-CoV-2 Spike protein and inhibit viral cellular entry. However, the clinical effectiveness of these vaccines is transitory as viral variants escape antibody neutralization. Effective vaccines that solely rely upon a T cell response to combat SARS-CoV-2 infection could be transformational because they can utilize highly conserved short pan-variant peptide epitopes, but a mRNA-LNP T cell vaccine has not been shown to provide effective anti-SARS-CoV-2 prophylaxis. Here we show a mRNA-LNP vaccine (MIT-T-COVID) based on highly conserved short peptide epitopes activates CD8 and CD4 T cell responses that attenuate morbidity and prevent mortality in HLA-A*02:01 transgenic mice infected with SARS-CoV-2 Beta (B.1.351). We found CD8 T cells in mice immunized with MIT-T-COVID vaccine significantly increased from 1.1% to 24.0% of total pulmonary nucleated cells prior to and at 7 days post infection (dpi), respectively, indicating dynamic recruitment of circulating specific T cells into the infected lungs. Mice immunized with MIT-T-COVID had 2.8 (2 dpi) and 3.3 (7 dpi) times more lung infiltrating CD8 T cells than unimmunized mice. Mice immunized with MIT-T-COVID had 17.4 times more lung infiltrating CD4 T cells than unimmunized mice (7 dpi). The undetectable specific antibody response in MIT-T-COVID-immunized mice demonstrates specific T cell responses alone can effectively attenuate the pathogenesis of SARS-CoV-2 infection. Our results suggest further study is merited for pan-variant T cell vaccines, including for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.
许可的 COVID-19 疫苗通过诱导产生中和抗体来减轻病毒感染,这些抗体结合 SARS-CoV-2 刺突蛋白并抑制病毒细胞进入。然而,这些疫苗的临床效果是短暂的,因为病毒变异逃避了抗体中和。仅依靠 T 细胞反应来对抗 SARS-CoV-2 感染的有效疫苗可能具有变革性,因为它们可以利用高度保守的短泛变异肽表位,但尚未证明 mRNA-LNP T 细胞疫苗能提供有效的抗 SARS-CoV-2 预防作用。在这里,我们展示了一种基于高度保守的短肽表位的 mRNA-LNP 疫苗(MIT-T-COVID),该疫苗激活 CD8 和 CD4 T 细胞反应,可减轻 HLA-A*02:01 转基因感染 SARS-CoV-2 Beta(B.1.351)的小鼠的发病率并预防死亡率。我们发现,在感染前和感染后 7 天(dpi),用 MIT-T-COVID 疫苗免疫的小鼠中 CD8 T 细胞分别从总肺核细胞的 1.1%增加到 24.0%,表明循环特异性 T 细胞动态募集到感染的肺部。用 MIT-T-COVID 免疫的小鼠肺部浸润的 CD8 T 细胞比未免疫的小鼠多 2.8 倍(2 dpi)和 3.3 倍(7 dpi)。用 MIT-T-COVID 免疫的小鼠肺部浸润的 CD4 T 细胞比未免疫的小鼠多 17.4 倍(7 dpi)。在 MIT-T-COVID 免疫的小鼠中未检测到特异性抗体反应表明,单独的特异性 T 细胞反应可有效减轻 SARS-CoV-2 感染的发病机制。我们的结果表明,对于泛变异 T 细胞疫苗,包括不能产生中和抗体的个体或帮助减轻长期 COVID 的个体,进一步研究是值得的。