Suppr超能文献

利用谷歌应用商店上带有BERT情感标注以及RNN和LSTM混合的用户评论对Zoom云会议应用进行实际评级计算。

Actual rating calculation of the zoom cloud meetings app using user reviews on google play store with sentiment annotation of BERT and hybridization of RNN and LSTM.

作者信息

Islam Md Jahidul, Datta Ratri, Iqbal Anindya

机构信息

Department of Computer Science and Engineering, BGMEA University of Fashion and Technology, Dhaka 1230, Bangladesh.

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.

出版信息

Expert Syst Appl. 2023 Aug 1;223:119919. doi: 10.1016/j.eswa.2023.119919. Epub 2023 Mar 20.

Abstract

The recent outbreaks of the COVID-19 forced people to work from home. All the educational institutes run their academic activities online. The online meeting app the "Zoom Cloud Meeting" provides the most entire supports for this purpose. For providing proper functionalities require in this situation of online supports the developers need the frequent release of new versions of the application. Which makes the chances to have lots of bugs during the release of new versions. To fix those bugs introduce developer needs users' feedback based on the new release of the application. But most of the time the ratings and reviews are created contraposition between them because of the users' inadvertent in giving ratings and reviews. And it has been the main problem to fix those bugs using user ratings for software developers. For this reason, we conduct this average rating calculation process based on the sentiment of user reviews to help software developers. We use BERT-based sentiment annotation to create unbiased datasets and hybridize RNN with LSTM to find calculated ratings based on the unbiased reviews dataset. Out of four models trained on four different datasets, we found promising performance in two datasets containing a necessarily large amount of unbiased reviews. The results show that the reviews have more positive sentiments than the actual ratings. Our results found an average of 3.60 stars rating, where the actual average rating found in dataset is 3.08 stars. We use reviews of more than 250 apps from the Google Play app store. The results of our can provide more promising if we can use a large dataset only containing the reviews of the Zoom Cloud Meeting app.

摘要

近期新冠疫情的爆发迫使人们居家工作。所有教育机构都开展线上学术活动。在线会议应用程序“Zoom云会议”为此提供了全面支持。为了在这种在线支持的情况下提供所需的适当功能,开发者需要频繁发布应用程序的新版本。这使得在新版本发布期间出现大量漏洞的可能性增加。为修复这些漏洞,开发者需要基于应用程序新版本的用户反馈。但大多数时候,由于用户在给出评分和评论时的疏忽,评分和评论之间存在矛盾。对于软件开发人员来说,利用用户评分来修复这些漏洞一直是个主要问题。因此,我们基于用户评论的情感进行这个平均评分计算过程,以帮助软件开发人员。我们使用基于BERT的情感标注来创建无偏差数据集,并将RNN与LSTM混合,以便根据无偏差评论数据集找到计算出的评分。在四个不同数据集上训练的四个模型中,我们在两个包含大量无偏差评论的数据集上发现了有前景的性能。结果表明,评论的积极情感比实际评分更多。我们的结果发现平均评分为3.60星,而数据集中实际的平均评分为3.08星。我们使用了来自谷歌Play应用商店的250多个应用程序的评论。如果我们能使用仅包含Zoom云会议应用程序评论的大数据集,我们的结果会更有前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验