Suppr超能文献

金纳米棒与碳点的协同组合作为一种用于抑制冰重结晶和快速复温的多功能材料

A Synergistic Combination of AuNRs and C Dots as a Multifunctional Material for Ice Recrystallization Inhibition and Rapid Rewarming.

作者信息

Ding Shenyi, Ali Sarmad, Zhang Shudong, Zhao Jun, Liu Cui, Aslam Muhammad Adnan, Yu Xinling, Xi Min, Pan Lei, Li Nian, Wang Zhenyang

机构信息

Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.

出版信息

ACS Omega. 2023 Mar 8;8(11):10466-10475. doi: 10.1021/acsomega.3c00079. eCollection 2023 Mar 21.

Abstract

Robust platforms and advanced biocompatible materials having diverse performances are in tremendous demand for cryopreservation of biocells, which are greatly limited by the crystallization, formation, and growth of ice crystals. The fickle structure and the arduous extraction process of modern attainable antifreezing proteins cause fatal cryoinjury of the cells making it challenging to develop anti-icing materials. Thus, designing Au colloids is an effective way to combat cell-damaging concerns during the ice freezing-thawing process. Herein, we propose an emerging biomimetic hybrid nanomaterial (AuNR@SiO-CDs) prepared by combining the photoheating and rewarming controlling characteristics of carbon dots (CDs) and gold nanorods (AuNRs), respectively, via a SiO scaffold that has an optimal aspect ratio of ∼4.4. The performance of the material is applied in the freezing and resuscitation of Hela cells. The typical linkage between the AuNR and CDs not only retains the stable structure but also possesses the symmetric functional characteristics of affirmative cryoprotectant materials and sustained low cytotoxicity of cell viability >90%. The cell recovery rate of the Hela cell is significantly improved to ∼60%, which is propped up to >4% higher by the laser irradiation dose. The above hybrid material is paving a path toward novel bionic antifreezing proteins and is envisioned for ice recrystallization inhibition and rapid rewarming.

摘要

对于生物细胞的冷冻保存而言,亟需具备多样性能的强大平台和先进的生物相容性材料,然而这受到冰晶的结晶、形成和生长的极大限制。现代可得的抗冻蛋白结构多变且提取过程艰巨,会导致细胞遭受致命的冷冻损伤,这使得开发抗冰材料颇具挑战性。因此,设计金胶体是解决冰冻结 - 解冻过程中细胞损伤问题的有效途径。在此,我们提出一种新型的仿生杂化纳米材料(AuNR@SiO - CDs),它是通过分别结合碳点(CDs)的光热和复温控制特性以及金纳米棒(AuNRs),经由具有约4.4的最佳纵横比的SiO支架制备而成。该材料的性能应用于Hela细胞的冷冻和复苏。AuNR与CDs之间的典型连接不仅保持了稳定的结构,还具备肯定的冷冻保护材料的对称功能特性以及细胞活力>90%的持续低细胞毒性。Hela细胞的细胞回收率显著提高至约60%,激光照射剂量使其进一步提高超过4%。上述杂化材料为新型仿生抗冻蛋白开辟了道路,并有望用于抑制冰重结晶和快速复温。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/10034974/4212e1c9b168/ao3c00079_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验